不同复杂环境中目标散射的空中合成孔径声纳数据集。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Thomas E Blanford, David P Williams, J Daniel Park, Brian T Reinhardt, Kyle S Dalton, Shawn F Johnson, Daniel C Brown
{"title":"不同复杂环境中目标散射的空中合成孔径声纳数据集。","authors":"Thomas E Blanford, David P Williams, J Daniel Park, Brian T Reinhardt, Kyle S Dalton, Shawn F Johnson, Daniel C Brown","doi":"10.1038/s41597-024-04050-0","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes a synthetic aperture sonar (SAS) dataset collected in-air consisting of four types of targets in four environments of different complexity. The in-air laboratory based experiments produced data with a level of fidelity and ground truth accuracy that is not easily attainable in data collected underwater. The range of complexity, high level of data fidelity, and accurate ground truth provides a rich dataset with acoustic features on multiple scales. It can be used to develop new signal-processing and image reconstruction algorithms, as well as machine learning models for object detection and classification. It may also find application in model verification and validation for acoustic simulators. The dataset consists of raw acoustic time series returns, associated environmental conditions, hardware configuration, array motion, as well as the reconstructed imagery.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1196"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538465/pdf/","citationCount":"0","resultStr":"{\"title\":\"An in-air synthetic aperture sonar dataset of target scattering in environments of varying complexity.\",\"authors\":\"Thomas E Blanford, David P Williams, J Daniel Park, Brian T Reinhardt, Kyle S Dalton, Shawn F Johnson, Daniel C Brown\",\"doi\":\"10.1038/s41597-024-04050-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper describes a synthetic aperture sonar (SAS) dataset collected in-air consisting of four types of targets in four environments of different complexity. The in-air laboratory based experiments produced data with a level of fidelity and ground truth accuracy that is not easily attainable in data collected underwater. The range of complexity, high level of data fidelity, and accurate ground truth provides a rich dataset with acoustic features on multiple scales. It can be used to develop new signal-processing and image reconstruction algorithms, as well as machine learning models for object detection and classification. It may also find application in model verification and validation for acoustic simulators. The dataset consists of raw acoustic time series returns, associated environmental conditions, hardware configuration, array motion, as well as the reconstructed imagery.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1196\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04050-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04050-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在空中采集的合成孔径声纳(SAS)数据集,该数据集由四种不同复杂环境中的四类目标组成。基于实验室的空中实验生成的数据具有水下数据难以达到的保真度和地面实况精度。复杂程度的范围、高水平的数据保真度和精确的地面实况提供了一个丰富的数据集,具有多种尺度的声学特征。它可用于开发新的信号处理和图像重建算法,以及用于物体检测和分类的机器学习模型。它还可用于声学模拟器的模型验证和确认。数据集包括原始声学时间序列回波、相关环境条件、硬件配置、阵列运动以及重建图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An in-air synthetic aperture sonar dataset of target scattering in environments of varying complexity.

This paper describes a synthetic aperture sonar (SAS) dataset collected in-air consisting of four types of targets in four environments of different complexity. The in-air laboratory based experiments produced data with a level of fidelity and ground truth accuracy that is not easily attainable in data collected underwater. The range of complexity, high level of data fidelity, and accurate ground truth provides a rich dataset with acoustic features on multiple scales. It can be used to develop new signal-processing and image reconstruction algorithms, as well as machine learning models for object detection and classification. It may also find application in model verification and validation for acoustic simulators. The dataset consists of raw acoustic time series returns, associated environmental conditions, hardware configuration, array motion, as well as the reconstructed imagery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信