Paulien H M Voorter, Jacobus F A Jansen, Merel M van der Thiel, Maud van Dinther, Alida A Postma, Robert J van Oostenbrugge, Oliver J Gurney-Champion, Gerhard S Drenthen, Walter H Backes
{"title":"扩散衍生的体素内相干运动各向异性与 CSF 和血流有关。","authors":"Paulien H M Voorter, Jacobus F A Jansen, Merel M van der Thiel, Maud van Dinther, Alida A Postma, Robert J van Oostenbrugge, Oliver J Gurney-Champion, Gerhard S Drenthen, Walter H Backes","doi":"10.1002/mrm.30294","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the feasibility of multi-b-value, multi-directional diffusion MRI for assessing the anisotropy of the cerebral pseudo-diffusion (D*)-tensor. We examine D*-tensor's potential to (1) reflect CSF and blood flow, and (2) detect microvascular architectural alterations in cerebral small vessel disease (cSVD) and aging.</p><p><strong>Methods: </strong>Multi-b-value diffusion MRI was acquired in 32 gradient directions for 11 healthy volunteers, and in six directions for 29 patients with cSVD and 14 controls at 3 T. A physics-informed neural network was used to estimate intravoxel incoherent motion (IVIM)-DTI model parameters, including the parenchymal slow diffusion (D-)tensor and the pseudo-diffusion (D*)-tensor, from which the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were derived. Comparisons of D*-tensor metrics were made between lateral, third, and fourth ventricles and between the middle cerebral arteries and superior sagittal sinus. Group differences in D*-tensor metrics in normal-appearing white matter were analyzed using multivariable linear regression, correcting for age and sex.</p><p><strong>Results: </strong>D*-anisotropy aligned well with CSF flow and arterial blood flow. FA(D*), MD(D*), AD(D*), and RD(D*) were highest in the third, moderate in the fourth, and lowest in the lateral ventricles. The arteries showed higher MD(D*), AD(D*), and RD(D*) than the sagittal sinus. Higher FA(D*) in the normal-appearing white matter was related to cSVD diagnosis and older age, suggesting microvascular architecture alterations.</p><p><strong>Conclusion: </strong>Multi-b-value, multi-directional diffusion analysis using the IVIM-DTI model enables assessment of the cerebral microstructure, fluid flow, and microvascular architecture, providing information on neurodegeneration, glymphatic waste clearance, and the vasculature in one measurement.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":"930-941"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diffusion-derived intravoxel-incoherent motion anisotropy relates to CSF and blood flow.\",\"authors\":\"Paulien H M Voorter, Jacobus F A Jansen, Merel M van der Thiel, Maud van Dinther, Alida A Postma, Robert J van Oostenbrugge, Oliver J Gurney-Champion, Gerhard S Drenthen, Walter H Backes\",\"doi\":\"10.1002/mrm.30294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the feasibility of multi-b-value, multi-directional diffusion MRI for assessing the anisotropy of the cerebral pseudo-diffusion (D*)-tensor. We examine D*-tensor's potential to (1) reflect CSF and blood flow, and (2) detect microvascular architectural alterations in cerebral small vessel disease (cSVD) and aging.</p><p><strong>Methods: </strong>Multi-b-value diffusion MRI was acquired in 32 gradient directions for 11 healthy volunteers, and in six directions for 29 patients with cSVD and 14 controls at 3 T. A physics-informed neural network was used to estimate intravoxel incoherent motion (IVIM)-DTI model parameters, including the parenchymal slow diffusion (D-)tensor and the pseudo-diffusion (D*)-tensor, from which the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were derived. Comparisons of D*-tensor metrics were made between lateral, third, and fourth ventricles and between the middle cerebral arteries and superior sagittal sinus. Group differences in D*-tensor metrics in normal-appearing white matter were analyzed using multivariable linear regression, correcting for age and sex.</p><p><strong>Results: </strong>D*-anisotropy aligned well with CSF flow and arterial blood flow. FA(D*), MD(D*), AD(D*), and RD(D*) were highest in the third, moderate in the fourth, and lowest in the lateral ventricles. The arteries showed higher MD(D*), AD(D*), and RD(D*) than the sagittal sinus. Higher FA(D*) in the normal-appearing white matter was related to cSVD diagnosis and older age, suggesting microvascular architecture alterations.</p><p><strong>Conclusion: </strong>Multi-b-value, multi-directional diffusion analysis using the IVIM-DTI model enables assessment of the cerebral microstructure, fluid flow, and microvascular architecture, providing information on neurodegeneration, glymphatic waste clearance, and the vasculature in one measurement.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"930-941\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30294\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30294","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Diffusion-derived intravoxel-incoherent motion anisotropy relates to CSF and blood flow.
This study investigates the feasibility of multi-b-value, multi-directional diffusion MRI for assessing the anisotropy of the cerebral pseudo-diffusion (D*)-tensor. We examine D*-tensor's potential to (1) reflect CSF and blood flow, and (2) detect microvascular architectural alterations in cerebral small vessel disease (cSVD) and aging.
Methods: Multi-b-value diffusion MRI was acquired in 32 gradient directions for 11 healthy volunteers, and in six directions for 29 patients with cSVD and 14 controls at 3 T. A physics-informed neural network was used to estimate intravoxel incoherent motion (IVIM)-DTI model parameters, including the parenchymal slow diffusion (D-)tensor and the pseudo-diffusion (D*)-tensor, from which the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were derived. Comparisons of D*-tensor metrics were made between lateral, third, and fourth ventricles and between the middle cerebral arteries and superior sagittal sinus. Group differences in D*-tensor metrics in normal-appearing white matter were analyzed using multivariable linear regression, correcting for age and sex.
Results: D*-anisotropy aligned well with CSF flow and arterial blood flow. FA(D*), MD(D*), AD(D*), and RD(D*) were highest in the third, moderate in the fourth, and lowest in the lateral ventricles. The arteries showed higher MD(D*), AD(D*), and RD(D*) than the sagittal sinus. Higher FA(D*) in the normal-appearing white matter was related to cSVD diagnosis and older age, suggesting microvascular architecture alterations.
Conclusion: Multi-b-value, multi-directional diffusion analysis using the IVIM-DTI model enables assessment of the cerebral microstructure, fluid flow, and microvascular architecture, providing information on neurodegeneration, glymphatic waste clearance, and the vasculature in one measurement.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.