João Marcos Anghinoni, Irum, Haroon Ur Rashid, Eder João Lenardão, Márcio Santos Silva
{"title":"用于监测有机反应和有机化合物的 31P 核磁共振波谱。","authors":"João Marcos Anghinoni, Irum, Haroon Ur Rashid, Eder João Lenardão, Márcio Santos Silva","doi":"10.1002/tcr.202400132","DOIUrl":null,"url":null,"abstract":"<p><p><sup>31</sup>P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, <sup>31</sup>P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the <sup>31</sup>P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of <sup>31</sup>P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400132"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<sup>31</sup>P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds.\",\"authors\":\"João Marcos Anghinoni, Irum, Haroon Ur Rashid, Eder João Lenardão, Márcio Santos Silva\",\"doi\":\"10.1002/tcr.202400132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><sup>31</sup>P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, <sup>31</sup>P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the <sup>31</sup>P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of <sup>31</sup>P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202400132\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202400132\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400132","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
31P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds.
31P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, 31P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the 31P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of 31P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.