Joseph Lee, Antoine Gleizes, Nicolas V Janto, Lito L Appell, Siyang Sun, Felipe Takaesu, Sarah F Webster, Taylor Hailstock, Nick Barker, Adam D Gracz
{"title":"基因毒性损伤后的类器官存活需要Lgr5+肠干细胞。","authors":"Joseph Lee, Antoine Gleizes, Nicolas V Janto, Lito L Appell, Siyang Sun, Felipe Takaesu, Sarah F Webster, Taylor Hailstock, Nick Barker, Adam D Gracz","doi":"10.1242/dev.202941","DOIUrl":null,"url":null,"abstract":"<p><p>Progenitors and mature cells can maintain the intestinal epithelium by dedifferentiation and facultative intestinal stem cell (fISC) function when active ISCs (aISCs) are lost to damage. Here, we modeled fISC activation in intestinal organoids with doxorubicin (DXR), a chemotherapeutic known to ablate Lgr5+ aISCs in vivo. Similar fISC gene activation was observed between organoids treated with low vs high DXR, despite significantly decreased survival at the higher dose. aISCs exhibit dose-dependent loss after DXR but survive at doses compatible with organoid survival. We ablated residual aISCs after DXR using a Lgr52A-DTR allele and observed that aISC survival of the initial genotoxic insult is required for organoid survival following DXR. These results suggest that while typical fISC genes are activated by DXR injury in organoids, functional stemness remains dependent on the aISC pool. Finally, we show that human intestinal organoids require higher doses of DXR to induce loss of survival and downregulation of LGR5. Our data establish a reproducible model of DXR injury in intestinal organoids and reveal differences in in vitro responses to an established in vivo damage modality.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lgr5+ intestinal stem cells are required for organoid survival after genotoxic injury.\",\"authors\":\"Joseph Lee, Antoine Gleizes, Nicolas V Janto, Lito L Appell, Siyang Sun, Felipe Takaesu, Sarah F Webster, Taylor Hailstock, Nick Barker, Adam D Gracz\",\"doi\":\"10.1242/dev.202941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progenitors and mature cells can maintain the intestinal epithelium by dedifferentiation and facultative intestinal stem cell (fISC) function when active ISCs (aISCs) are lost to damage. Here, we modeled fISC activation in intestinal organoids with doxorubicin (DXR), a chemotherapeutic known to ablate Lgr5+ aISCs in vivo. Similar fISC gene activation was observed between organoids treated with low vs high DXR, despite significantly decreased survival at the higher dose. aISCs exhibit dose-dependent loss after DXR but survive at doses compatible with organoid survival. We ablated residual aISCs after DXR using a Lgr52A-DTR allele and observed that aISC survival of the initial genotoxic insult is required for organoid survival following DXR. These results suggest that while typical fISC genes are activated by DXR injury in organoids, functional stemness remains dependent on the aISC pool. Finally, we show that human intestinal organoids require higher doses of DXR to induce loss of survival and downregulation of LGR5. Our data establish a reproducible model of DXR injury in intestinal organoids and reveal differences in in vitro responses to an established in vivo damage modality.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.202941\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.202941","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Lgr5+ intestinal stem cells are required for organoid survival after genotoxic injury.
Progenitors and mature cells can maintain the intestinal epithelium by dedifferentiation and facultative intestinal stem cell (fISC) function when active ISCs (aISCs) are lost to damage. Here, we modeled fISC activation in intestinal organoids with doxorubicin (DXR), a chemotherapeutic known to ablate Lgr5+ aISCs in vivo. Similar fISC gene activation was observed between organoids treated with low vs high DXR, despite significantly decreased survival at the higher dose. aISCs exhibit dose-dependent loss after DXR but survive at doses compatible with organoid survival. We ablated residual aISCs after DXR using a Lgr52A-DTR allele and observed that aISC survival of the initial genotoxic insult is required for organoid survival following DXR. These results suggest that while typical fISC genes are activated by DXR injury in organoids, functional stemness remains dependent on the aISC pool. Finally, we show that human intestinal organoids require higher doses of DXR to induce loss of survival and downregulation of LGR5. Our data establish a reproducible model of DXR injury in intestinal organoids and reveal differences in in vitro responses to an established in vivo damage modality.
期刊介绍:
Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community.
Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication.
To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.