Ruixuan Li, Aixia Xu, Ye Chen, Yihui Li, Ru Fu, Weihong Jiang, Xiaogang Li
{"title":"制备芹菜素和腺苷负载纳米粒子,通过减少炎症和氧化应激来预防多柔比星诱发的心肌梗死","authors":"Ruixuan Li, Aixia Xu, Ye Chen, Yihui Li, Ru Fu, Weihong Jiang, Xiaogang Li","doi":"10.1186/s12896-024-00912-y","DOIUrl":null,"url":null,"abstract":"<p><p>The study's goals are to fabricate PLGA nanoparticles (PNPs) loaded with apigenin (AP) and adenosine (AD) using a microfluidic preparation method to a standard emulsification method and investigate the possible heart-protective effects of AP-AD PNPs made using the emulsification method. Compared to microfluidics, the emulsification method fabricated small-size nanoparticles, which are better at encapsulating drugs, retaining more drugs, and having a low viscosity for the myocardial infarction (MI) injection. TheMI model was developed using SD rats injected under the skin with 85 mg/kg doxorubicin (DOX) for 2 days. The metabolic results showed that our AP-AD PNPs accelerated the blood flow in rats with MI, which increased the amounts of AP and AD in the circulatory system. This led to significant improvements in the cardiac index and lower amounts of AST, LDH, and CK in the blood. A histopathological study using Hematoxylin&eosin, and TUNEL staining showed that cardiac function had improved and apoptosis had decreased. Moreover, tests that checked the amounts of IL-6, TNF-α, NO, GSH, MDA, and SOD showed that AP-AD PNPs may help treat MI by reducing oxidative stress and inflammation, making it a potentially useful therapeutic approach.</p>","PeriodicalId":8905,"journal":{"name":"BMC Biotechnology","volume":"24 1","pages":"87"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fabrication of apigenin and adenosine-loaded nanoparticles against doxorubicin-induced myocardial infarction by reducing inflammation and oxidative stress.\",\"authors\":\"Ruixuan Li, Aixia Xu, Ye Chen, Yihui Li, Ru Fu, Weihong Jiang, Xiaogang Li\",\"doi\":\"10.1186/s12896-024-00912-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study's goals are to fabricate PLGA nanoparticles (PNPs) loaded with apigenin (AP) and adenosine (AD) using a microfluidic preparation method to a standard emulsification method and investigate the possible heart-protective effects of AP-AD PNPs made using the emulsification method. Compared to microfluidics, the emulsification method fabricated small-size nanoparticles, which are better at encapsulating drugs, retaining more drugs, and having a low viscosity for the myocardial infarction (MI) injection. TheMI model was developed using SD rats injected under the skin with 85 mg/kg doxorubicin (DOX) for 2 days. The metabolic results showed that our AP-AD PNPs accelerated the blood flow in rats with MI, which increased the amounts of AP and AD in the circulatory system. This led to significant improvements in the cardiac index and lower amounts of AST, LDH, and CK in the blood. A histopathological study using Hematoxylin&eosin, and TUNEL staining showed that cardiac function had improved and apoptosis had decreased. Moreover, tests that checked the amounts of IL-6, TNF-α, NO, GSH, MDA, and SOD showed that AP-AD PNPs may help treat MI by reducing oxidative stress and inflammation, making it a potentially useful therapeutic approach.</p>\",\"PeriodicalId\":8905,\"journal\":{\"name\":\"BMC Biotechnology\",\"volume\":\"24 1\",\"pages\":\"87\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12896-024-00912-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12896-024-00912-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
该研究的目的是用微流控制备法和标准乳化法制备负载有芹菜素(AP)和腺苷(AD)的聚乳酸丙烯酸酯(PLGA)纳米粒子(PNPs),并研究用乳化法制备的AP-AD PNPs可能具有的心脏保护作用。与微流控制备法相比,乳化法制备的纳米粒子尺寸更小,更能包裹药物、保留更多药物,而且粘度低,更适合心肌梗死(MI)注射。心肌梗死模型是利用 SD 大鼠皮下注射 85 毫克/千克多柔比星(DOX)2 天后建立的。代谢结果表明,我们的 AP-AD PNPs 加快了心肌梗死大鼠的血流速度,增加了循环系统中的 AP 和 AD 含量。这导致心脏指数明显改善,血液中的 AST、LDH 和 CK 含量降低。使用苏木精和 TUNEL 染色法进行的组织病理学研究表明,心脏功能得到改善,细胞凋亡减少。此外,对 IL-6、TNF-α、NO、GSH、MDA 和 SOD 含量的检测表明,AP-AD PNPs 可通过减少氧化应激和炎症来帮助治疗心肌梗死,是一种潜在的有效治疗方法。
Fabrication of apigenin and adenosine-loaded nanoparticles against doxorubicin-induced myocardial infarction by reducing inflammation and oxidative stress.
The study's goals are to fabricate PLGA nanoparticles (PNPs) loaded with apigenin (AP) and adenosine (AD) using a microfluidic preparation method to a standard emulsification method and investigate the possible heart-protective effects of AP-AD PNPs made using the emulsification method. Compared to microfluidics, the emulsification method fabricated small-size nanoparticles, which are better at encapsulating drugs, retaining more drugs, and having a low viscosity for the myocardial infarction (MI) injection. TheMI model was developed using SD rats injected under the skin with 85 mg/kg doxorubicin (DOX) for 2 days. The metabolic results showed that our AP-AD PNPs accelerated the blood flow in rats with MI, which increased the amounts of AP and AD in the circulatory system. This led to significant improvements in the cardiac index and lower amounts of AST, LDH, and CK in the blood. A histopathological study using Hematoxylin&eosin, and TUNEL staining showed that cardiac function had improved and apoptosis had decreased. Moreover, tests that checked the amounts of IL-6, TNF-α, NO, GSH, MDA, and SOD showed that AP-AD PNPs may help treat MI by reducing oxidative stress and inflammation, making it a potentially useful therapeutic approach.
期刊介绍:
BMC Biotechnology is an open access, peer-reviewed journal that considers articles on the manipulation of biological macromolecules or organisms for use in experimental procedures, cellular and tissue engineering or in the pharmaceutical, agricultural biotechnology and allied industries.