Devin W Laurence, Patricia M Sabin, Analise M Sulentic, Matthew Daemer, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley
{"title":"FEBio FINESSE:利用形状强化估算体内心脏瓣膜应变的开源有限元模拟方法。","authors":"Devin W Laurence, Patricia M Sabin, Analise M Sulentic, Matthew Daemer, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley","doi":"10.1007/s10439-024-03637-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.</p><p><strong>Methods: </strong>We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients.</p><p><strong>Results: </strong>Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within <math><mrow><mo>±</mo> <mspace></mspace> <mn>0.03</mn></mrow> </math> strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients.</p><p><strong>Conclusions: </strong>FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.\",\"authors\":\"Devin W Laurence, Patricia M Sabin, Analise M Sulentic, Matthew Daemer, Steve A Maas, Jeffrey A Weiss, Matthew A Jolley\",\"doi\":\"10.1007/s10439-024-03637-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.</p><p><strong>Methods: </strong>We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients.</p><p><strong>Results: </strong>Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within <math><mrow><mo>±</mo> <mspace></mspace> <mn>0.03</mn></mrow> </math> strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients.</p><p><strong>Conclusions: </strong>FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03637-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03637-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
FEBio FINESSE: An Open-Source Finite Element Simulation Approach to Estimate In Vivo Heart Valve Strains Using Shape Enforcement.
Purpose: Finite element simulations are an enticing tool to evaluate heart valve function; however, patient-specific simulations derived from 3D echocardiography are hampered by several technical challenges. The objective of this work is to develop an open-source method to enforce matching between finite element simulations and in vivo image-derived heart valve geometry in the absence of patient-specific material properties, leaflet thickness, and chordae tendineae structures.
Methods: We evaluate FEBio Finite Element Simulations with Shape Enforcement (FINESSE) using three synthetic test cases considering a range of model complexity. FINESSE is then used to estimate the in vivo valve behavior and leaflet strains for three pediatric patients.
Results: Our results suggest that FINESSE can be used to enforce finite element simulations to match an image-derived surface and estimate the first principal leaflet strains within strain. Key considerations include: (i) defining the user-defined penalty, (ii) omitting the leaflet commissures to improve simulation convergence, and (iii) emulating the chordae tendineae behavior via prescribed leaflet free edge motion or a chordae emulating force. In all patient-specific cases, FINESSE matched the target surface with median errors of approximately the smallest voxel dimension. Further analysis revealed valve-specific findings, such as the tricuspid valve leaflet strains of a 2-day old patient with HLHS being larger than those of two 13-year old patients.
Conclusions: FEBio FINESSE can be used to estimate patient-specific in vivo heart valve leaflet strains. The development of this open-source pipeline will enable future studies to begin linking in vivo leaflet mechanics with patient outcomes.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.