André A Dos Santos, Abrahão A DE Oliveira-Filho, Bráulio A Teixeira, José Lucas F M Galvão, Maria Alice A DE Medeiros, Millena S Alves, David Henrique X Barbosa, Rodrigo P Mafra, Ulrich Vasconcelos, Edeltrudes O Lima
{"title":"评估(-)-葑酮对口腔白色念珠菌的抗菌活性和毒理学参数:一项体内、体外和体外研究。","authors":"André A Dos Santos, Abrahão A DE Oliveira-Filho, Bráulio A Teixeira, José Lucas F M Galvão, Maria Alice A DE Medeiros, Millena S Alves, David Henrique X Barbosa, Rodrigo P Mafra, Ulrich Vasconcelos, Edeltrudes O Lima","doi":"10.1590/0001-3765202420240273","DOIUrl":null,"url":null,"abstract":"<p><p>Candida albicans is the primary species causing oral candidiasis. Its increasing drug resistance drives the search for more effective antifungal agents. Therefore, we assessed toxicological parameters and the antimicrobial activity and mechanisms of action of the monoterpene (-)-fenchone against oral C. albicans. We conducted an in silico study using PASS online and AdmetSAR, followed by evaluation of antifungal activity through Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), association study with miconazole, and assays with sorbitol and ergosterol. Inhibition of biofilm formation and disruption of preformed biofilm were considered. Toxicity was also assessed through hemolysis assay. The in silico study revealed a higher likelihood of the compound being active for antifungal activity, as well as promising pharmacokinetic and toxicity characteristics. Subsequently, (-)-fenchone exhibited predominantly fungicidal activity (MIC90 = 8 μg/mL; MFC = 16 μg/mL), including against miconazole-resistant C. albicans isolates. The substance does not appear to act by damaging the fungal cell wall or plasma membrane, and exhibited synergy with miconazole. There was activity in inhibiting biofilm formation but not in disrupting preformed biofilm. Finally, the product exerted low hemolytic activity at more than MIC×10. Based on these results, (-)-fenchone may represent a promising therapeutic alternative for oral candidiasis.</p>","PeriodicalId":7776,"journal":{"name":"Anais da Academia Brasileira de Ciencias","volume":"96 4","pages":"e20240273"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of (-)-Fenchone antimicrobial activity against oral Candida albicans and toxicological parameters: an in silico, in vitro and ex vivo study.\",\"authors\":\"André A Dos Santos, Abrahão A DE Oliveira-Filho, Bráulio A Teixeira, José Lucas F M Galvão, Maria Alice A DE Medeiros, Millena S Alves, David Henrique X Barbosa, Rodrigo P Mafra, Ulrich Vasconcelos, Edeltrudes O Lima\",\"doi\":\"10.1590/0001-3765202420240273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Candida albicans is the primary species causing oral candidiasis. Its increasing drug resistance drives the search for more effective antifungal agents. Therefore, we assessed toxicological parameters and the antimicrobial activity and mechanisms of action of the monoterpene (-)-fenchone against oral C. albicans. We conducted an in silico study using PASS online and AdmetSAR, followed by evaluation of antifungal activity through Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), association study with miconazole, and assays with sorbitol and ergosterol. Inhibition of biofilm formation and disruption of preformed biofilm were considered. Toxicity was also assessed through hemolysis assay. The in silico study revealed a higher likelihood of the compound being active for antifungal activity, as well as promising pharmacokinetic and toxicity characteristics. Subsequently, (-)-fenchone exhibited predominantly fungicidal activity (MIC90 = 8 μg/mL; MFC = 16 μg/mL), including against miconazole-resistant C. albicans isolates. The substance does not appear to act by damaging the fungal cell wall or plasma membrane, and exhibited synergy with miconazole. There was activity in inhibiting biofilm formation but not in disrupting preformed biofilm. Finally, the product exerted low hemolytic activity at more than MIC×10. Based on these results, (-)-fenchone may represent a promising therapeutic alternative for oral candidiasis.</p>\",\"PeriodicalId\":7776,\"journal\":{\"name\":\"Anais da Academia Brasileira de Ciencias\",\"volume\":\"96 4\",\"pages\":\"e20240273\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da Academia Brasileira de Ciencias\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1590/0001-3765202420240273\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da Academia Brasileira de Ciencias","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1590/0001-3765202420240273","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Evaluation of (-)-Fenchone antimicrobial activity against oral Candida albicans and toxicological parameters: an in silico, in vitro and ex vivo study.
Candida albicans is the primary species causing oral candidiasis. Its increasing drug resistance drives the search for more effective antifungal agents. Therefore, we assessed toxicological parameters and the antimicrobial activity and mechanisms of action of the monoterpene (-)-fenchone against oral C. albicans. We conducted an in silico study using PASS online and AdmetSAR, followed by evaluation of antifungal activity through Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), association study with miconazole, and assays with sorbitol and ergosterol. Inhibition of biofilm formation and disruption of preformed biofilm were considered. Toxicity was also assessed through hemolysis assay. The in silico study revealed a higher likelihood of the compound being active for antifungal activity, as well as promising pharmacokinetic and toxicity characteristics. Subsequently, (-)-fenchone exhibited predominantly fungicidal activity (MIC90 = 8 μg/mL; MFC = 16 μg/mL), including against miconazole-resistant C. albicans isolates. The substance does not appear to act by damaging the fungal cell wall or plasma membrane, and exhibited synergy with miconazole. There was activity in inhibiting biofilm formation but not in disrupting preformed biofilm. Finally, the product exerted low hemolytic activity at more than MIC×10. Based on these results, (-)-fenchone may represent a promising therapeutic alternative for oral candidiasis.
期刊介绍:
The Brazilian Academy of Sciences (BAS) publishes its journal, Annals of the Brazilian Academy of Sciences (AABC, in its Brazilianportuguese acronym ), every 3 months, being the oldest journal in Brazil with conkinuous distribukion, daking back to 1929. This scienkihic journal aims to publish the advances in scienkihic research from both Brazilian and foreigner scienkists, who work in the main research centers in the whole world, always looking for excellence.
Essenkially a mulkidisciplinary journal, the AABC cover, with both reviews and original researches, the diverse areas represented in the Academy, such as Biology, Physics, Biomedical Sciences, Chemistry, Agrarian Sciences, Engineering, Mathemakics, Social, Health and Earth Sciences.