{"title":"用于预测 circRNA-RBP 结合位点的 TCN-CrossMHA 集成模型。","authors":"Yajing Guo, Xiujuan Lei, Shuyu Li","doi":"10.1007/s12539-024-00660-9","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated TCN-CrossMHA Model for Predicting circRNA-RBP Binding Sites.\",\"authors\":\"Yajing Guo, Xiujuan Lei, Shuyu Li\",\"doi\":\"10.1007/s12539-024-00660-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00660-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00660-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
An Integrated TCN-CrossMHA Model for Predicting circRNA-RBP Binding Sites.
Circular RNA (circRNA) has the capacity to bind with RNA binding protein (RBP), thereby exerting a substantial impact on diseases. Predicting binding sites aids in comprehending the interaction mechanism, thereby offering insights for disease treatment strategies. Here, we propose a novel approach based on temporal convolutional network (TCN) and cross multi-head attention mechanism to predict circRNA-RBP binding sites (circTCA). First, we employ two distinct encoding methodologies to obtain two raw matrices of circRNA sequences. Then, two parallel TCN blocks extract shallow and abstract features of the two matrices separately. The fusion of the two is achieved through cross multi-head attention mechanism and after this, global expectation pooling assigns weights to the concatenated feature. Finally, the task of classifying the input sequence is entrusted to a fully connected (FC) layer. We compare circTCA with other five methods and conduct ablation experiments to demonstrate its effectiveness. We also conduct feature visualization and assess the motifs extracted by circTCA with existing motifs. All in all, circTCA is effective for binding sites prediction of circRNA and RBP.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.