通过激光加工实现新型后端铁电场效应晶体管平台。

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-06 DOI:10.1002/smll.202406376
Sang Woo Kim, Wonjun Shin, Ryun-Han Koo, Jangsaeng Kim, Jiseong Im, Dooyong Koh, Jong-Ho Lee, Suraj S Cheema, Daewoong Kwon
{"title":"通过激光加工实现新型后端铁电场效应晶体管平台。","authors":"Sang Woo Kim, Wonjun Shin, Ryun-Han Koo, Jangsaeng Kim, Jiseong Im, Dooyong Koh, Jong-Ho Lee, Suraj S Cheema, Daewoong Kwon","doi":"10.1002/smll.202406376","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of ferroelectricity in hafnia-based materials has revitalized interest in realizing ferroelectric field-effect transistors (FeFETs) due to its compatibility with modern microelectronics. Furthermore, low-temperature processing by atomic layer deposition offers promise for realizing monolithic three-dimensional (M3D) integration toward energy- and area-efficient computing paradigms. However, integrating ferroelectrics with channel materials in FeFETs for M3D integration remains challenging due to the dual requirement of a high-quality ferroelectric-channel interface and low-power operation, all while maintaining back-end-of-line (BEOL)-compatible fabrication temperatures. Recent studies on 2D semiconductors and metal oxide channels highlight these challenges. Polycrystalline silicon (poly-Si), a channel material long integrated into the semiconductor industry, presents a promising alternative; however, its high fabrication temperature has hindered its applications to M3D integration. To overcome this challenge, we demonstrates a BEOL-compatible FeFET platform using poly-Si channels fabricated via locally-confined laser thermal processing and hafnia-based ferroelectrics by low-temperature atomic layer deposition with wafer-scale uniformity. The local nature of the laser processing mitigates the trade-off between the high-temperature crystallization for the quality of the interface and BEOL thermal budget constraints. The laser-processed FeFETs boast the largest effective memory widow for all BEOL-compatible FeFETs. Moreover, the fabricated FeFETs are integrated into wafer-scale synaptic arrays for neuromorphic computing, achieving record-high energy efficiency. Therefore, this work establishes a promising BEOL-compatible FeFET materials platform toward M3D integration.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Back-End-Of-Line Ferroelectric Field-Effect Transistor Platform via Laser Processing.\",\"authors\":\"Sang Woo Kim, Wonjun Shin, Ryun-Han Koo, Jangsaeng Kim, Jiseong Im, Dooyong Koh, Jong-Ho Lee, Suraj S Cheema, Daewoong Kwon\",\"doi\":\"10.1002/smll.202406376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of ferroelectricity in hafnia-based materials has revitalized interest in realizing ferroelectric field-effect transistors (FeFETs) due to its compatibility with modern microelectronics. Furthermore, low-temperature processing by atomic layer deposition offers promise for realizing monolithic three-dimensional (M3D) integration toward energy- and area-efficient computing paradigms. However, integrating ferroelectrics with channel materials in FeFETs for M3D integration remains challenging due to the dual requirement of a high-quality ferroelectric-channel interface and low-power operation, all while maintaining back-end-of-line (BEOL)-compatible fabrication temperatures. Recent studies on 2D semiconductors and metal oxide channels highlight these challenges. Polycrystalline silicon (poly-Si), a channel material long integrated into the semiconductor industry, presents a promising alternative; however, its high fabrication temperature has hindered its applications to M3D integration. To overcome this challenge, we demonstrates a BEOL-compatible FeFET platform using poly-Si channels fabricated via locally-confined laser thermal processing and hafnia-based ferroelectrics by low-temperature atomic layer deposition with wafer-scale uniformity. The local nature of the laser processing mitigates the trade-off between the high-temperature crystallization for the quality of the interface and BEOL thermal budget constraints. The laser-processed FeFETs boast the largest effective memory widow for all BEOL-compatible FeFETs. Moreover, the fabricated FeFETs are integrated into wafer-scale synaptic arrays for neuromorphic computing, achieving record-high energy efficiency. Therefore, this work establishes a promising BEOL-compatible FeFET materials platform toward M3D integration.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202406376\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于铁电场效应晶体管(FeFET)与现代微电子技术的兼容性,在铪基材料中发现的铁电性重新激发了人们对实现铁电场效应晶体管(FeFET)的兴趣。此外,通过原子层沉积进行低温处理,有望实现单片三维(M3D)集成,从而实现节能和节省面积的计算模式。然而,由于高质量铁电-沟道界面和低功耗运行的双重要求,同时又要保持与后端线(BEOL)兼容的制造温度,因此在铁氧体场效应晶体管中将铁电与沟道材料集成以实现 M3D 集成仍然具有挑战性。最近对二维半导体和金属氧化物沟道的研究凸显了这些挑战。多晶硅(Poly-Si)是一种早已融入半导体行业的沟道材料,是一种很有前景的替代材料;然而,其较高的制造温度阻碍了它在 M3D 集成中的应用。为了克服这一挑战,我们展示了一种兼容 BEOL 的 FeFET 平台,该平台使用通过局部限制激光热加工制造的多晶硅沟道和通过晶圆级均匀性低温原子层沉积制造的铪基铁电材料。激光加工的局部性减轻了高温结晶对界面质量和 BEOL 热预算限制之间的权衡。在所有 BEOL 兼容型 FeFET 中,激光加工的 FeFET 拥有最大的有效存储空间。此外,制造出的 FeFET 被集成到用于神经形态计算的晶圆级突触阵列中,实现了创纪录的高能效。因此,这项工作为实现 M3D 集成建立了一个前景广阔的 BEOL 兼容型 FeFET 材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A New Back-End-Of-Line Ferroelectric Field-Effect Transistor Platform via Laser Processing.

A New Back-End-Of-Line Ferroelectric Field-Effect Transistor Platform via Laser Processing.

The discovery of ferroelectricity in hafnia-based materials has revitalized interest in realizing ferroelectric field-effect transistors (FeFETs) due to its compatibility with modern microelectronics. Furthermore, low-temperature processing by atomic layer deposition offers promise for realizing monolithic three-dimensional (M3D) integration toward energy- and area-efficient computing paradigms. However, integrating ferroelectrics with channel materials in FeFETs for M3D integration remains challenging due to the dual requirement of a high-quality ferroelectric-channel interface and low-power operation, all while maintaining back-end-of-line (BEOL)-compatible fabrication temperatures. Recent studies on 2D semiconductors and metal oxide channels highlight these challenges. Polycrystalline silicon (poly-Si), a channel material long integrated into the semiconductor industry, presents a promising alternative; however, its high fabrication temperature has hindered its applications to M3D integration. To overcome this challenge, we demonstrates a BEOL-compatible FeFET platform using poly-Si channels fabricated via locally-confined laser thermal processing and hafnia-based ferroelectrics by low-temperature atomic layer deposition with wafer-scale uniformity. The local nature of the laser processing mitigates the trade-off between the high-temperature crystallization for the quality of the interface and BEOL thermal budget constraints. The laser-processed FeFETs boast the largest effective memory widow for all BEOL-compatible FeFETs. Moreover, the fabricated FeFETs are integrated into wafer-scale synaptic arrays for neuromorphic computing, achieving record-high energy efficiency. Therefore, this work establishes a promising BEOL-compatible FeFET materials platform toward M3D integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信