{"title":"3-Oxo-11αH-germacra-1(10) E,4Z-dien-12,6α-olide(一种来自青蒿的倍半萜)可通过 NF-κB/MAPK 通路减轻脂多糖诱导的炎症反应,并通过 ROS 通路减轻 RAW264.7 细胞的氧化应激反应。","authors":"Qianqian Ren, Lili Wang, Xin Wang, Xiaoran Min, Xiling Dai, Guozheng Huang, Jianguo Cao","doi":"10.1007/s11418-024-01854-7","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is a vital and normal physiological response; however, excessive inflammation can contribute to the development of various diseases. Artemisia sieversiana, a traditional Chinese medicinal plant, contains a variety of chemical compounds. One such compound, 3-oxo-11αH-germacra-1(10)E,4Z-dien-12,6α-olide, a germacranolide sesquiterpenoid (germacranolide, GMO), has not been thoroughly investigated regarding its potential anti-inflammatory properties. In this study, the anti-inflammatory and antioxidant properties of GMO were investigated for the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. It was demonstrated that GMO effectively suppressed the production of inflammatory mediators, decreased the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in RAW264.7 cells. Additionally, GMO exhibited the capacity to mitigate oxidative damage induced by LPS, as indicated by assessments of reactive oxygen species and mitochondrial membrane potential. In summary, GMO possesses significant anti-inflammatory effects by modulating the NF-κB/MAPK pathway and antioxidant effects by regulating ROS production.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-Oxo-11αH-germacra-1(10) E,4Z-dien-12,6α-olide, a sesquiterpene from Artemisia sieversiana, attenuates lipopolysaccharide-induced inflammation via NF-κB/MAPK pathways and oxidative stress via ROS pathway in RAW264.7 cells.\",\"authors\":\"Qianqian Ren, Lili Wang, Xin Wang, Xiaoran Min, Xiling Dai, Guozheng Huang, Jianguo Cao\",\"doi\":\"10.1007/s11418-024-01854-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammation is a vital and normal physiological response; however, excessive inflammation can contribute to the development of various diseases. Artemisia sieversiana, a traditional Chinese medicinal plant, contains a variety of chemical compounds. One such compound, 3-oxo-11αH-germacra-1(10)E,4Z-dien-12,6α-olide, a germacranolide sesquiterpenoid (germacranolide, GMO), has not been thoroughly investigated regarding its potential anti-inflammatory properties. In this study, the anti-inflammatory and antioxidant properties of GMO were investigated for the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. It was demonstrated that GMO effectively suppressed the production of inflammatory mediators, decreased the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in RAW264.7 cells. Additionally, GMO exhibited the capacity to mitigate oxidative damage induced by LPS, as indicated by assessments of reactive oxygen species and mitochondrial membrane potential. In summary, GMO possesses significant anti-inflammatory effects by modulating the NF-κB/MAPK pathway and antioxidant effects by regulating ROS production.</p>\",\"PeriodicalId\":654,\"journal\":{\"name\":\"Journal of Natural Medicines\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Medicines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11418-024-01854-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11418-024-01854-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
3-Oxo-11αH-germacra-1(10) E,4Z-dien-12,6α-olide, a sesquiterpene from Artemisia sieversiana, attenuates lipopolysaccharide-induced inflammation via NF-κB/MAPK pathways and oxidative stress via ROS pathway in RAW264.7 cells.
Inflammation is a vital and normal physiological response; however, excessive inflammation can contribute to the development of various diseases. Artemisia sieversiana, a traditional Chinese medicinal plant, contains a variety of chemical compounds. One such compound, 3-oxo-11αH-germacra-1(10)E,4Z-dien-12,6α-olide, a germacranolide sesquiterpenoid (germacranolide, GMO), has not been thoroughly investigated regarding its potential anti-inflammatory properties. In this study, the anti-inflammatory and antioxidant properties of GMO were investigated for the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. It was demonstrated that GMO effectively suppressed the production of inflammatory mediators, decreased the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in RAW264.7 cells. Additionally, GMO exhibited the capacity to mitigate oxidative damage induced by LPS, as indicated by assessments of reactive oxygen species and mitochondrial membrane potential. In summary, GMO possesses significant anti-inflammatory effects by modulating the NF-κB/MAPK pathway and antioxidant effects by regulating ROS production.
期刊介绍:
The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers:
-chemistry of natural products
-biochemistry of medicinal plants
-pharmacology of natural products and herbs, including Kampo formulas and traditional herbs
-botanical anatomy
-cultivation of medicinal plants.
The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.