Sanjeevi Nagalingam, Hui Wang, Saewung Kim, Alex Guenther
{"title":"柏科(Cupressaceae)针叶树单萜、甲基丁烯醇和其他挥发性物质的热应力诱导作用出乎意料地强烈。","authors":"Sanjeevi Nagalingam, Hui Wang, Saewung Kim, Alex Guenther","doi":"10.1016/j.scitotenv.2024.177336","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the biogenic volatile organic compound (BVOC) emission rates and composition of Cupressaceae species and how the emissions change in response to moderate warming and more severe heat stress. A total of 8 species from 7 distinct Cupressaceae genera were targeted in this study and exposed to laboratory-simulated heatwaves. Each plant was enclosed in a temperature-controlled glass chamber and allowed to equilibrate at 30 °C for 24 h. The temperature was then increased stepwise from 33 °C to 43 °C in 2 °C increments, with each step lasting 2 h, and was finally kept at 45 °C for 12 h. The BVOC emissions were measured periodically using an automated air sampler coupled to a gas chromatograph. Most of the sampled Cupressaceae species (6 out of 8) were low BVOC emitters (<0.3 μgC g<sup>-1</sup> h<sup>-1</sup>) at 30 °C. However, the BVOC emissions of all 8 species increased strongly with temperature, and in most species (5 out of 8), the emissions continued to increase with longer exposure times to heat stress. The largest increase was observed in Thuja occidentalis and Chamaecyparis thyoides, which reached maximum emissions of 350 and 190 μgC g<sup>-1</sup> h<sup>-1</sup>, respectively. Of the different BVOCs, monoterpenes responded most strongly to heat stress, with Q<sub>10</sub> temperature coefficients typically ranging between 7.6 and 22, which were significantly greater than the model-predicted value of 2.7. Other BVOCs including sesquiterpenes, C<sub>9</sub> aromatics (only detected in Calocedrus decurrens), methylbutenols, and other C<sub>5</sub> oxygenates were also induced by heat stress, but generally at a lower magnitude than monoterpenes. Our results indicate that Cupressaceae are a large but typically dormant source of reactive volatile hydrocarbons (mostly monoterpenes) whose emissions can be activated by heat stress. This phenomenon could have important implications for ozone and aerosol formation, air quality, and human health, particularly in urban areas that are prone to heatwaves.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177336"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unexpectedly strong heat stress induction of monoterpene, methylbutenol, and other volatile emissions for conifers in the cypress family (Cupressaceae).\",\"authors\":\"Sanjeevi Nagalingam, Hui Wang, Saewung Kim, Alex Guenther\",\"doi\":\"10.1016/j.scitotenv.2024.177336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the biogenic volatile organic compound (BVOC) emission rates and composition of Cupressaceae species and how the emissions change in response to moderate warming and more severe heat stress. A total of 8 species from 7 distinct Cupressaceae genera were targeted in this study and exposed to laboratory-simulated heatwaves. Each plant was enclosed in a temperature-controlled glass chamber and allowed to equilibrate at 30 °C for 24 h. The temperature was then increased stepwise from 33 °C to 43 °C in 2 °C increments, with each step lasting 2 h, and was finally kept at 45 °C for 12 h. The BVOC emissions were measured periodically using an automated air sampler coupled to a gas chromatograph. Most of the sampled Cupressaceae species (6 out of 8) were low BVOC emitters (<0.3 μgC g<sup>-1</sup> h<sup>-1</sup>) at 30 °C. However, the BVOC emissions of all 8 species increased strongly with temperature, and in most species (5 out of 8), the emissions continued to increase with longer exposure times to heat stress. The largest increase was observed in Thuja occidentalis and Chamaecyparis thyoides, which reached maximum emissions of 350 and 190 μgC g<sup>-1</sup> h<sup>-1</sup>, respectively. Of the different BVOCs, monoterpenes responded most strongly to heat stress, with Q<sub>10</sub> temperature coefficients typically ranging between 7.6 and 22, which were significantly greater than the model-predicted value of 2.7. Other BVOCs including sesquiterpenes, C<sub>9</sub> aromatics (only detected in Calocedrus decurrens), methylbutenols, and other C<sub>5</sub> oxygenates were also induced by heat stress, but generally at a lower magnitude than monoterpenes. Our results indicate that Cupressaceae are a large but typically dormant source of reactive volatile hydrocarbons (mostly monoterpenes) whose emissions can be activated by heat stress. This phenomenon could have important implications for ozone and aerosol formation, air quality, and human health, particularly in urban areas that are prone to heatwaves.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177336\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177336\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177336","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unexpectedly strong heat stress induction of monoterpene, methylbutenol, and other volatile emissions for conifers in the cypress family (Cupressaceae).
We investigated the biogenic volatile organic compound (BVOC) emission rates and composition of Cupressaceae species and how the emissions change in response to moderate warming and more severe heat stress. A total of 8 species from 7 distinct Cupressaceae genera were targeted in this study and exposed to laboratory-simulated heatwaves. Each plant was enclosed in a temperature-controlled glass chamber and allowed to equilibrate at 30 °C for 24 h. The temperature was then increased stepwise from 33 °C to 43 °C in 2 °C increments, with each step lasting 2 h, and was finally kept at 45 °C for 12 h. The BVOC emissions were measured periodically using an automated air sampler coupled to a gas chromatograph. Most of the sampled Cupressaceae species (6 out of 8) were low BVOC emitters (<0.3 μgC g-1 h-1) at 30 °C. However, the BVOC emissions of all 8 species increased strongly with temperature, and in most species (5 out of 8), the emissions continued to increase with longer exposure times to heat stress. The largest increase was observed in Thuja occidentalis and Chamaecyparis thyoides, which reached maximum emissions of 350 and 190 μgC g-1 h-1, respectively. Of the different BVOCs, monoterpenes responded most strongly to heat stress, with Q10 temperature coefficients typically ranging between 7.6 and 22, which were significantly greater than the model-predicted value of 2.7. Other BVOCs including sesquiterpenes, C9 aromatics (only detected in Calocedrus decurrens), methylbutenols, and other C5 oxygenates were also induced by heat stress, but generally at a lower magnitude than monoterpenes. Our results indicate that Cupressaceae are a large but typically dormant source of reactive volatile hydrocarbons (mostly monoterpenes) whose emissions can be activated by heat stress. This phenomenon could have important implications for ozone and aerosol formation, air quality, and human health, particularly in urban areas that are prone to heatwaves.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.