Carlo Andrea Pagnacco, Alberto Alvarez-Fernandez, Armando Maestro, Estíbaliz González de San Román, Reidar Lund, Fabienne Barroso-Bujans
{"title":"改变全缩水甘油超支化甘油的核心拓扑结构:合成与物理特性。","authors":"Carlo Andrea Pagnacco, Alberto Alvarez-Fernandez, Armando Maestro, Estíbaliz González de San Román, Reidar Lund, Fabienne Barroso-Bujans","doi":"10.1002/marc.202400791","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 10<sup>3</sup>-10<sup>6</sup> g mol<sup>-1</sup>. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk. The morphology study of the high molecular weight structures using atomic force microscopy revealed a spherical shape for cPG-g-hbPG and hbPG, and a cylindrical shape for linPG-g-hbPG in the nanometric range. Small angle X-ray scattering confirmed the compact particle-like structure of this family of hbPG architectures. Interestingly, the glass transition temperature showed a structure dependence, with cPG-g-hbPG having the highest values and hbPG having the lowest values for the same molecular weight. This study is a step forward in the generation of water-soluble polymers with tailored structure and functionality for advanced applications.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400791"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization.\",\"authors\":\"Carlo Andrea Pagnacco, Alberto Alvarez-Fernandez, Armando Maestro, Estíbaliz González de San Román, Reidar Lund, Fabienne Barroso-Bujans\",\"doi\":\"10.1002/marc.202400791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 10<sup>3</sup>-10<sup>6</sup> g mol<sup>-1</sup>. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk. The morphology study of the high molecular weight structures using atomic force microscopy revealed a spherical shape for cPG-g-hbPG and hbPG, and a cylindrical shape for linPG-g-hbPG in the nanometric range. Small angle X-ray scattering confirmed the compact particle-like structure of this family of hbPG architectures. Interestingly, the glass transition temperature showed a structure dependence, with cPG-g-hbPG having the highest values and hbPG having the lowest values for the same molecular weight. This study is a step forward in the generation of water-soluble polymers with tailored structure and functionality for advanced applications.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400791\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400791\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400791","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,低分子量环状聚缩水甘油被用作超接枝缩水甘油的大引发剂,并生成分子量范围为 103-106 g mol-1 的环状接枝超支化聚甘油(cPG-g-hbPG)。线性接枝超支化聚甘油(linPG-g-hbPG)和超支化聚甘油(hbPG)被制备为参考样品。这样就形成了具有环状、线性和星形核心的 hbPG 结构系列,从而可以评估它们在溶液和块体中的特性。使用原子力显微镜对高分子量结构进行的形态学研究表明,cPG-g-hbPG 和 hbPG 呈球形,而 linPG-g-hbPG 则呈纳米级的圆柱形。小角 X 射线散射证实了这一系列 hbPG 结构的紧凑颗粒状结构。有趣的是,玻璃化转变温度与结构有关,在相同分子量下,cPG-g-hbPG 的玻璃化转变温度最高,而 hbPG 的玻璃化转变温度最低。这项研究在为先进应用生成具有定制结构和功能的水溶性聚合物方面向前迈进了一步。
Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization.
In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 103-106 g mol-1. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk. The morphology study of the high molecular weight structures using atomic force microscopy revealed a spherical shape for cPG-g-hbPG and hbPG, and a cylindrical shape for linPG-g-hbPG in the nanometric range. Small angle X-ray scattering confirmed the compact particle-like structure of this family of hbPG architectures. Interestingly, the glass transition temperature showed a structure dependence, with cPG-g-hbPG having the highest values and hbPG having the lowest values for the same molecular weight. This study is a step forward in the generation of water-soluble polymers with tailored structure and functionality for advanced applications.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.