层对称性和辐照对生物源异戊二烯的氧化能力起主导作用。

IF 8 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-12-15 Epub Date: 2024-11-09 DOI:10.1016/j.scitotenv.2024.177332
Zhengyan Han, Xuehua Zou, Haibo Liu, Tianhu Chen, Can Wang, Ping Zhang, Dong Chen, Yuefei Zhou, Qiaoqin Xie, Qimengzi Wang, Jinyong Chen, Aidi Huang, Steven L Suib
{"title":"层对称性和辐照对生物源异戊二烯的氧化能力起主导作用。","authors":"Zhengyan Han, Xuehua Zou, Haibo Liu, Tianhu Chen, Can Wang, Ping Zhang, Dong Chen, Yuefei Zhou, Qiaoqin Xie, Qimengzi Wang, Jinyong Chen, Aidi Huang, Steven L Suib","doi":"10.1016/j.scitotenv.2024.177332","DOIUrl":null,"url":null,"abstract":"<p><p>The climate-active gas isoprene (C<sub>5</sub>H<sub>8</sub>) is one of the most abundant biogenic volatile organic compounds (VOCs). Soil is one of the significant sinks for isoprene, yet the role played by the naturally abundant birnessite in the soil surface layer during the oxidation of isoprene remains largely unknown. This study investigates the reactions of isoprene with triclinic and hexagonal birnessite on the Earth's surface environments. Hexagonal birnessite exhibits a superior oxidation capacity than triclinic birnessite, rapidly oxidizing isoprene. The transformation of birnessite from triclinic to hexagonal increases the number of interlayer Mn(III) octahedra, which creates numerous sites for isoprene oxidation. In-situ DRIFTS and DFT calculations indicate that abundant electrophilic active species on the surface of hexagonal birnessite, such as interlayer Mn(III) octahedra and <sup>1</sup>O<sub>2</sub>, oxidize isoprene by attacking conjugated double bonds. Furthermore, birnessite exhibits excellent photoelectric response and photothermal effects, enabling sunlight irradiation under natural conditions to accelerate the oxidation of isoprene by birnessite. The findings of this study elucidates the critical role of birnessite in the oxidation of isoprene and shed light on the fate of isoprene in soil minerals.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177332"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer symmetry and irradiation dominate the oxidation capability of birnessite on biogenic isoprene.\",\"authors\":\"Zhengyan Han, Xuehua Zou, Haibo Liu, Tianhu Chen, Can Wang, Ping Zhang, Dong Chen, Yuefei Zhou, Qiaoqin Xie, Qimengzi Wang, Jinyong Chen, Aidi Huang, Steven L Suib\",\"doi\":\"10.1016/j.scitotenv.2024.177332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The climate-active gas isoprene (C<sub>5</sub>H<sub>8</sub>) is one of the most abundant biogenic volatile organic compounds (VOCs). Soil is one of the significant sinks for isoprene, yet the role played by the naturally abundant birnessite in the soil surface layer during the oxidation of isoprene remains largely unknown. This study investigates the reactions of isoprene with triclinic and hexagonal birnessite on the Earth's surface environments. Hexagonal birnessite exhibits a superior oxidation capacity than triclinic birnessite, rapidly oxidizing isoprene. The transformation of birnessite from triclinic to hexagonal increases the number of interlayer Mn(III) octahedra, which creates numerous sites for isoprene oxidation. In-situ DRIFTS and DFT calculations indicate that abundant electrophilic active species on the surface of hexagonal birnessite, such as interlayer Mn(III) octahedra and <sup>1</sup>O<sub>2</sub>, oxidize isoprene by attacking conjugated double bonds. Furthermore, birnessite exhibits excellent photoelectric response and photothermal effects, enabling sunlight irradiation under natural conditions to accelerate the oxidation of isoprene by birnessite. The findings of this study elucidates the critical role of birnessite in the oxidation of isoprene and shed light on the fate of isoprene in soil minerals.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\" \",\"pages\":\"177332\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177332\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177332","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有气候活性的气体异戊二烯(C5H8)是最丰富的生物挥发性有机化合物(VOCs)之一。土壤是异戊二烯的重要吸收汇之一,但土壤表层天然丰富的桦褐铁矿在异戊二烯氧化过程中所起的作用在很大程度上仍不为人所知。本研究调查了异戊二烯与地球表面环境中的三方和六方桦烷石的反应。六方菱锰矿的氧化能力优于三方菱锰矿,能迅速氧化异戊二烯。桦镍矿从三棱到六方的转变增加了层间锰(III)八面体的数量,从而为异戊二烯的氧化创造了大量的位点。原位 DRIFTS 和 DFT 计算表明,六方桦烷石表面丰富的亲电活性物种(如层间八面体锰(III)和 1O2)通过攻击共轭双键氧化异戊二烯。此外,桦镍矿还具有出色的光电响应和光热效应,在自然条件下,阳光照射可加速桦镍矿氧化异戊二烯。这项研究结果阐明了桦镍矿在异戊二烯氧化过程中的关键作用,并揭示了异戊二烯在土壤矿物中的归宿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layer symmetry and irradiation dominate the oxidation capability of birnessite on biogenic isoprene.

The climate-active gas isoprene (C5H8) is one of the most abundant biogenic volatile organic compounds (VOCs). Soil is one of the significant sinks for isoprene, yet the role played by the naturally abundant birnessite in the soil surface layer during the oxidation of isoprene remains largely unknown. This study investigates the reactions of isoprene with triclinic and hexagonal birnessite on the Earth's surface environments. Hexagonal birnessite exhibits a superior oxidation capacity than triclinic birnessite, rapidly oxidizing isoprene. The transformation of birnessite from triclinic to hexagonal increases the number of interlayer Mn(III) octahedra, which creates numerous sites for isoprene oxidation. In-situ DRIFTS and DFT calculations indicate that abundant electrophilic active species on the surface of hexagonal birnessite, such as interlayer Mn(III) octahedra and 1O2, oxidize isoprene by attacking conjugated double bonds. Furthermore, birnessite exhibits excellent photoelectric response and photothermal effects, enabling sunlight irradiation under natural conditions to accelerate the oxidation of isoprene by birnessite. The findings of this study elucidates the critical role of birnessite in the oxidation of isoprene and shed light on the fate of isoprene in soil minerals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信