Weitong Cui, Zhiyong Guo, Xingyu Chen, Ran Yan, Wenjuan Ma, Xiao Yang, Yunfeng Lin
{"title":"抗菌核酸负载外泌体纳米颗粒通过口服途径靶向调节肠道菌群,改善帕金森病。","authors":"Weitong Cui, Zhiyong Guo, Xingyu Chen, Ran Yan, Wenjuan Ma, Xiao Yang, Yunfeng Lin","doi":"10.1016/j.scib.2024.10.027","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. It is usually accompanied by motor and non-motor symptoms that seriously threaten the health and the quality of life. Novel medications are urgently needed because current pharmaceuticals can relieve symptoms but cannot stop disease progression. The microbiota-gut-brain axis (MGBA) is closely associated with the occurrence and development of PD and is an effective therapeutic target. Tetrahedral framework nucleic acids (tFNAs) can modulate the microbiome and immune regulation. However, such nucleic acid nanostructures are very sensitive to acids which hinder this promising approach. Therefore, we prepared exosome-like nanovesicles (Exo@tac) from ginger that are acid resistant and equipped with tFNAs modified by antimicrobial peptides (AMP). We verified that Exo@tac regulates intestinal bacteria associated with the microbial-gut-brain axis in vitro and significantly improves PD symptoms in vivo when administered orally. Microbiota profiling confirmed that Exo@tac normalizes the intestinal flora composition of mouse models of PD. Our findings present a novel strategy for the development of PD drugs and the innovative delivery of nucleic acid nanomedicines.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting modulation of intestinal flora through oral route by an antimicrobial nucleic acid-loaded exosome-like nanovesicles to improve Parkinson's disease.\",\"authors\":\"Weitong Cui, Zhiyong Guo, Xingyu Chen, Ran Yan, Wenjuan Ma, Xiao Yang, Yunfeng Lin\",\"doi\":\"10.1016/j.scib.2024.10.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. It is usually accompanied by motor and non-motor symptoms that seriously threaten the health and the quality of life. Novel medications are urgently needed because current pharmaceuticals can relieve symptoms but cannot stop disease progression. The microbiota-gut-brain axis (MGBA) is closely associated with the occurrence and development of PD and is an effective therapeutic target. Tetrahedral framework nucleic acids (tFNAs) can modulate the microbiome and immune regulation. However, such nucleic acid nanostructures are very sensitive to acids which hinder this promising approach. Therefore, we prepared exosome-like nanovesicles (Exo@tac) from ginger that are acid resistant and equipped with tFNAs modified by antimicrobial peptides (AMP). We verified that Exo@tac regulates intestinal bacteria associated with the microbial-gut-brain axis in vitro and significantly improves PD symptoms in vivo when administered orally. Microbiota profiling confirmed that Exo@tac normalizes the intestinal flora composition of mouse models of PD. Our findings present a novel strategy for the development of PD drugs and the innovative delivery of nucleic acid nanomedicines.</p>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scib.2024.10.027\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2024.10.027","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Targeting modulation of intestinal flora through oral route by an antimicrobial nucleic acid-loaded exosome-like nanovesicles to improve Parkinson's disease.
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. It is usually accompanied by motor and non-motor symptoms that seriously threaten the health and the quality of life. Novel medications are urgently needed because current pharmaceuticals can relieve symptoms but cannot stop disease progression. The microbiota-gut-brain axis (MGBA) is closely associated with the occurrence and development of PD and is an effective therapeutic target. Tetrahedral framework nucleic acids (tFNAs) can modulate the microbiome and immune regulation. However, such nucleic acid nanostructures are very sensitive to acids which hinder this promising approach. Therefore, we prepared exosome-like nanovesicles (Exo@tac) from ginger that are acid resistant and equipped with tFNAs modified by antimicrobial peptides (AMP). We verified that Exo@tac regulates intestinal bacteria associated with the microbial-gut-brain axis in vitro and significantly improves PD symptoms in vivo when administered orally. Microbiota profiling confirmed that Exo@tac normalizes the intestinal flora composition of mouse models of PD. Our findings present a novel strategy for the development of PD drugs and the innovative delivery of nucleic acid nanomedicines.
期刊介绍:
Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.