掺杂同种异体骨的纳米氧化铈复合支架材料:基于抗炎特性和促进成骨矿化的双重优化

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yuqiao Li, Yongkang Huang, Houzhi Yang, Yuxin Li, Gan Luo, Yuan Ma, Haiyang Cheng, Yubin Long, Weiwei Xia, Haiying Liu, Huayi Fang, Yaping Du, Tianwei Sun, Kaifeng Wang, Xinyun Zhai
{"title":"掺杂同种异体骨的纳米氧化铈复合支架材料:基于抗炎特性和促进成骨矿化的双重优化","authors":"Yuqiao Li, Yongkang Huang, Houzhi Yang, Yuxin Li, Gan Luo, Yuan Ma, Haiyang Cheng, Yubin Long, Weiwei Xia, Haiying Liu, Huayi Fang, Yaping Du, Tianwei Sun, Kaifeng Wang, Xinyun Zhai","doi":"10.1002/adhm.202403006","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal fusion technique is widely used in the treatment of lumbar degeneration, cervical instability, disc injury, and spinal deformity. However, it is usually accompanied by a high incidence of fusion failure and pseudoarthrosis, placing higher demands on bone implants. Therefore, materials with good biocompatibility, osteoconductivity, and even induce bone ingrowth, which can be used to improve spinal fusion rate and bone regeneration, have become a hot research topic. Here, ultra-small cerium oxide nanoparticles (CeO<sub>2</sub> NPs) are prepared and loaded onto the surface of the homograft bone surface to prepare a composite scaffold AB@PLGA/CeO<sub>2</sub>. The composite scaffold shows the competitive ability to promote osteoblast differentiation in vitro. In vivo experiments show that AB@PLGA/CeO<sub>2</sub> has a good bone enhancement effect. In particular, good biological effects of collagen fiber formation, osteogenic mineralization, and tissue repair are shown in intervertebral implant fusion. Further, transcriptome sequencing confirms that CeO<sub>2</sub> NPs promote osteogenic differentiation and mineralization by regulating extracellular matrix (ECM) and collagen formation. Meanwhile, CeO<sub>2</sub> NPs can regulate the function of the PI3K-Akt signaling pathway to exert its ability to promote osteogenic differentiation and mineralization and affect p53 and cell cycle signaling pathway to regulate osteogenic differentiation and mineralization. Hence, the proposed scaffold is a promising strategy for intervertebral fusion in the clinic.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403006"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Scaffold Materials of Nanocerium Oxide Doped with Allograft Bone: Dual Optimization Based on Anti-Inflammatory Properties and Promotion of Osteogenic Mineralization.\",\"authors\":\"Yuqiao Li, Yongkang Huang, Houzhi Yang, Yuxin Li, Gan Luo, Yuan Ma, Haiyang Cheng, Yubin Long, Weiwei Xia, Haiying Liu, Huayi Fang, Yaping Du, Tianwei Sun, Kaifeng Wang, Xinyun Zhai\",\"doi\":\"10.1002/adhm.202403006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal fusion technique is widely used in the treatment of lumbar degeneration, cervical instability, disc injury, and spinal deformity. However, it is usually accompanied by a high incidence of fusion failure and pseudoarthrosis, placing higher demands on bone implants. Therefore, materials with good biocompatibility, osteoconductivity, and even induce bone ingrowth, which can be used to improve spinal fusion rate and bone regeneration, have become a hot research topic. Here, ultra-small cerium oxide nanoparticles (CeO<sub>2</sub> NPs) are prepared and loaded onto the surface of the homograft bone surface to prepare a composite scaffold AB@PLGA/CeO<sub>2</sub>. The composite scaffold shows the competitive ability to promote osteoblast differentiation in vitro. In vivo experiments show that AB@PLGA/CeO<sub>2</sub> has a good bone enhancement effect. In particular, good biological effects of collagen fiber formation, osteogenic mineralization, and tissue repair are shown in intervertebral implant fusion. Further, transcriptome sequencing confirms that CeO<sub>2</sub> NPs promote osteogenic differentiation and mineralization by regulating extracellular matrix (ECM) and collagen formation. Meanwhile, CeO<sub>2</sub> NPs can regulate the function of the PI3K-Akt signaling pathway to exert its ability to promote osteogenic differentiation and mineralization and affect p53 and cell cycle signaling pathway to regulate osteogenic differentiation and mineralization. Hence, the proposed scaffold is a promising strategy for intervertebral fusion in the clinic.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403006\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403006\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

脊柱融合技术被广泛用于治疗腰椎退变、颈椎不稳、椎间盘损伤和脊柱畸形。然而,脊柱融合术通常伴随着较高的融合失败率和假关节发生率,这就对骨植入物提出了更高的要求。因此,具有良好生物相容性、骨传导性,甚至能诱导骨生长,用于提高脊柱融合率和骨再生的材料成为研究热点。本文制备了超小型氧化铈纳米颗粒(CeO2 NPs),并将其负载到同种异体骨表面,制备了AB@PLGA/CeO2复合支架。该复合支架在体外显示出促进成骨细胞分化的竞争能力。体内实验表明,AB@PLGA/CeO2 具有良好的骨增强效果。特别是在椎间植入物融合中,胶原纤维形成、成骨矿化和组织修复的生物效应良好。此外,转录组测序证实 CeO2 NPs 可通过调节细胞外基质(ECM)和胶原蛋白的形成促进成骨分化和矿化。同时,CeO2 NPs 可调节 PI3K-Akt 信号通路的功能,从而发挥其促进成骨分化和矿化的能力,并影响 p53 和细胞周期信号通路,从而调节成骨分化和矿化。因此,所提出的支架是一种很有前景的临床椎间融合策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite Scaffold Materials of Nanocerium Oxide Doped with Allograft Bone: Dual Optimization Based on Anti-Inflammatory Properties and Promotion of Osteogenic Mineralization.

Spinal fusion technique is widely used in the treatment of lumbar degeneration, cervical instability, disc injury, and spinal deformity. However, it is usually accompanied by a high incidence of fusion failure and pseudoarthrosis, placing higher demands on bone implants. Therefore, materials with good biocompatibility, osteoconductivity, and even induce bone ingrowth, which can be used to improve spinal fusion rate and bone regeneration, have become a hot research topic. Here, ultra-small cerium oxide nanoparticles (CeO2 NPs) are prepared and loaded onto the surface of the homograft bone surface to prepare a composite scaffold AB@PLGA/CeO2. The composite scaffold shows the competitive ability to promote osteoblast differentiation in vitro. In vivo experiments show that AB@PLGA/CeO2 has a good bone enhancement effect. In particular, good biological effects of collagen fiber formation, osteogenic mineralization, and tissue repair are shown in intervertebral implant fusion. Further, transcriptome sequencing confirms that CeO2 NPs promote osteogenic differentiation and mineralization by regulating extracellular matrix (ECM) and collagen formation. Meanwhile, CeO2 NPs can regulate the function of the PI3K-Akt signaling pathway to exert its ability to promote osteogenic differentiation and mineralization and affect p53 and cell cycle signaling pathway to regulate osteogenic differentiation and mineralization. Hence, the proposed scaffold is a promising strategy for intervertebral fusion in the clinic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信