Yuansheng Wu, Yingjie Zhu, Jie Chen, Lili Song, Chunping Wang, Yanglin Wu, Yanyang Chen, Jiancheng Zheng, Yuankun Zhai, Xiang Zhou, Youwen Liu, Yawei Du, Wenguo Cui
{"title":"通过类原药微球促进 mRNA 工程化单核细胞用于骨微环境多相重塑","authors":"Yuansheng Wu, Yingjie Zhu, Jie Chen, Lili Song, Chunping Wang, Yanglin Wu, Yanyang Chen, Jiancheng Zheng, Yuankun Zhai, Xiang Zhou, Youwen Liu, Yawei Du, Wenguo Cui","doi":"10.1002/adhm.202403212","DOIUrl":null,"url":null,"abstract":"<p><p>Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system. Then, monocyte-targeting IL-4 mRNA-LNPs are then prepared and integrated into injectable microspheres (mRNA-ICA@GM) via electrostatic and hydrogen bond interactions. After bone-defect injection, LNPs are controlled released from mRNA-ICA@GM within 3 days, rapidly transfecting monocytes for monocyte IL-4 mRNA-engineering, which effectively suppressed acute inflammatory responses via polarization programming and paracrine signaling. Afterwards, ICA is sustainably released as well via cleavable boronate esters across multiple stages, cooperatively boosting the mRNA-engineered monocytes to inhibit coenocytic fusion and osteoclastic function. Both in vitro and in vivo data indicated that mRNA-ICA@GM can not only reverse the inflammatory environment but also suppress monocyte-derived osteoclast formation to accelerate bone repair. In summary, mRNA-engineered monocytes and ICA prodrug-like microspheres are combined to achieve long-lasting multi-stage bone microenvironment regulation, offering a promising repair strategy.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403212"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting mRNA-Engineered Monocytes via Prodrug-Like Microspheres for Bone Microenvironment Multi-Phase Remodeling.\",\"authors\":\"Yuansheng Wu, Yingjie Zhu, Jie Chen, Lili Song, Chunping Wang, Yanglin Wu, Yanyang Chen, Jiancheng Zheng, Yuankun Zhai, Xiang Zhou, Youwen Liu, Yawei Du, Wenguo Cui\",\"doi\":\"10.1002/adhm.202403212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system. Then, monocyte-targeting IL-4 mRNA-LNPs are then prepared and integrated into injectable microspheres (mRNA-ICA@GM) via electrostatic and hydrogen bond interactions. After bone-defect injection, LNPs are controlled released from mRNA-ICA@GM within 3 days, rapidly transfecting monocytes for monocyte IL-4 mRNA-engineering, which effectively suppressed acute inflammatory responses via polarization programming and paracrine signaling. Afterwards, ICA is sustainably released as well via cleavable boronate esters across multiple stages, cooperatively boosting the mRNA-engineered monocytes to inhibit coenocytic fusion and osteoclastic function. Both in vitro and in vivo data indicated that mRNA-ICA@GM can not only reverse the inflammatory environment but also suppress monocyte-derived osteoclast formation to accelerate bone repair. In summary, mRNA-engineered monocytes and ICA prodrug-like microspheres are combined to achieve long-lasting multi-stage bone microenvironment regulation, offering a promising repair strategy.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403212\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403212\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403212","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Boosting mRNA-Engineered Monocytes via Prodrug-Like Microspheres for Bone Microenvironment Multi-Phase Remodeling.
Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system. Then, monocyte-targeting IL-4 mRNA-LNPs are then prepared and integrated into injectable microspheres (mRNA-ICA@GM) via electrostatic and hydrogen bond interactions. After bone-defect injection, LNPs are controlled released from mRNA-ICA@GM within 3 days, rapidly transfecting monocytes for monocyte IL-4 mRNA-engineering, which effectively suppressed acute inflammatory responses via polarization programming and paracrine signaling. Afterwards, ICA is sustainably released as well via cleavable boronate esters across multiple stages, cooperatively boosting the mRNA-engineered monocytes to inhibit coenocytic fusion and osteoclastic function. Both in vitro and in vivo data indicated that mRNA-ICA@GM can not only reverse the inflammatory environment but also suppress monocyte-derived osteoclast formation to accelerate bone repair. In summary, mRNA-engineered monocytes and ICA prodrug-like microspheres are combined to achieve long-lasting multi-stage bone microenvironment regulation, offering a promising repair strategy.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.