Sunbum Kwon, Vasily Morozov, Lingfei Wang, Pradeep K. Mandal, Stéphane Chaignepain, Céline Douat and Ivan Huc
{"title":"探究螺旋芳香折叠器识别蛋白质的潜力。","authors":"Sunbum Kwon, Vasily Morozov, Lingfei Wang, Pradeep K. Mandal, Stéphane Chaignepain, Céline Douat and Ivan Huc","doi":"10.1039/D4OB01436G","DOIUrl":null,"url":null,"abstract":"<p >A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its <em>P</em>- and <em>M</em>-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both <em>P</em>- and <em>M</em>-conformers bound to the proteins with similar affinities.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" 48","pages":" 9342-9347"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ob/d4ob01436g?page=search","citationCount":"0","resultStr":"{\"title\":\"Interrogating the potential of helical aromatic foldamers for protein recognition†\",\"authors\":\"Sunbum Kwon, Vasily Morozov, Lingfei Wang, Pradeep K. Mandal, Stéphane Chaignepain, Céline Douat and Ivan Huc\",\"doi\":\"10.1039/D4OB01436G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its <em>P</em>- and <em>M</em>-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both <em>P</em>- and <em>M</em>-conformers bound to the proteins with similar affinities.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" 48\",\"pages\":\" 9342-9347\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ob/d4ob01436g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ob/d4ob01436g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ob/d4ob01436g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
摘要
除了在其表面显示各种极性和疏水侧链外,我们还设计了一种生物素化的螺旋芳香族寡酰胺折叠聚合物,其大小相当于 24 聚肽。该产品在固相上合成,其 P-和 M-螺旋构象在手性固定相上通过高效液相色谱进行分离,并通过 X 射线晶体学阐明了非生物素化类似物的固态结构。以折叠酶为诱饵从酵母细胞裂解物中进行拉取实验,然后进行蛋白质组分析,发现了潜在的蛋白质结合伙伴。其中三种蛋白质被重组表达。生物层干涉测量法显示了亚摩尔级的结合力,这表明在没有设计考虑的情况下,特定的折叠聚合体对某些蛋白质具有亲和力。然而,这三种情况下的结合选择性都很低,因为 P 型和 M 型折叠体与蛋白质的结合亲和力相似。
Interrogating the potential of helical aromatic foldamers for protein recognition†
A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its P- and M-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both P- and M-conformers bound to the proteins with similar affinities.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.