{"title":"探索微调金属间钯镉纳米立方体尺寸时与尺寸相关的光学特性变化。","authors":"Jia-Lin Li, Ting-Yu Tien, Hung-Chun Liao, Hsin-Lun Wu","doi":"10.1039/d4nr03640a","DOIUrl":null,"url":null,"abstract":"<p><p>Tuning the size of intermetallic nanocrystals is challenging due to the conflicting effects of surface free energy and surface diffusion on the disorder-to-order phase transition during wet-chemistry growth. Herein, we synthesized intermetallic PdCd nanocubes with tunable sizes ranging from 8 to 15 nm by adjusting the Cd precursor concentrations using a wet-chemistry approach. This process shares a mechanism of size tuning similar to quantum dot synthesis, involving the regulation of monomer concentration determined by the precursor concentrations. The intermetallic PdCd nanocubes exhibit distinct size-dependent optical properties compared to platinum group metal nanocrystals of similar size ranges, with increased light-induced catalytic enhancement as size increases. The 15 nm-sized nanocubes exhibited the most significant light-induced catalytic enhancement, reaching 3.3 times, while the 8 nm-sized nanocubes showed only a 1.6-fold enhancement in 4-nitrophenol reduction. This study emphasizes the importance of tuning the size of intermetallic nanocrystals, providing valuable insights for future exploration of their size-dependent properties.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring size-dependent optical property alterations in fine-tuning intermetallic PdCd nanocube sizes.\",\"authors\":\"Jia-Lin Li, Ting-Yu Tien, Hung-Chun Liao, Hsin-Lun Wu\",\"doi\":\"10.1039/d4nr03640a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tuning the size of intermetallic nanocrystals is challenging due to the conflicting effects of surface free energy and surface diffusion on the disorder-to-order phase transition during wet-chemistry growth. Herein, we synthesized intermetallic PdCd nanocubes with tunable sizes ranging from 8 to 15 nm by adjusting the Cd precursor concentrations using a wet-chemistry approach. This process shares a mechanism of size tuning similar to quantum dot synthesis, involving the regulation of monomer concentration determined by the precursor concentrations. The intermetallic PdCd nanocubes exhibit distinct size-dependent optical properties compared to platinum group metal nanocrystals of similar size ranges, with increased light-induced catalytic enhancement as size increases. The 15 nm-sized nanocubes exhibited the most significant light-induced catalytic enhancement, reaching 3.3 times, while the 8 nm-sized nanocubes showed only a 1.6-fold enhancement in 4-nitrophenol reduction. This study emphasizes the importance of tuning the size of intermetallic nanocrystals, providing valuable insights for future exploration of their size-dependent properties.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nr03640a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03640a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning the size of intermetallic nanocrystals is challenging due to the conflicting effects of surface free energy and surface diffusion on the disorder-to-order phase transition during wet-chemistry growth. Herein, we synthesized intermetallic PdCd nanocubes with tunable sizes ranging from 8 to 15 nm by adjusting the Cd precursor concentrations using a wet-chemistry approach. This process shares a mechanism of size tuning similar to quantum dot synthesis, involving the regulation of monomer concentration determined by the precursor concentrations. The intermetallic PdCd nanocubes exhibit distinct size-dependent optical properties compared to platinum group metal nanocrystals of similar size ranges, with increased light-induced catalytic enhancement as size increases. The 15 nm-sized nanocubes exhibited the most significant light-induced catalytic enhancement, reaching 3.3 times, while the 8 nm-sized nanocubes showed only a 1.6-fold enhancement in 4-nitrophenol reduction. This study emphasizes the importance of tuning the size of intermetallic nanocrystals, providing valuable insights for future exploration of their size-dependent properties.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.