超薄氧化镁隧道势垒的热特性分析。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haotian Su, Heungdong Kwon, Fen Xue, Noriyuki Sato, Usha Bhat, Wilman Tsai, Michel Bosman, Mehdi Asheghi, Kenneth E Goodson, Eric Pop, Shan X Wang
{"title":"超薄氧化镁隧道势垒的热特性分析。","authors":"Haotian Su, Heungdong Kwon, Fen Xue, Noriyuki Sato, Usha Bhat, Wilman Tsai, Michel Bosman, Mehdi Asheghi, Kenneth E Goodson, Eric Pop, Shan X Wang","doi":"10.1021/acs.nanolett.4c02571","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic tunnel junctions (MTJs) with ultrathin MgO tunnel barriers are at the heart of magnetic random-access memory (MRAM) and exhibit potential for spin caloritronics applications due to the tunnel magneto-Seebeck effect. However, the high programming current in MRAM can cause substantial heating which degrades the endurance and reliability of MTJs. Here, we report the thermal characterization of ultrathin CoFeB/MgO multilayers with total thicknesses of 4.4, 8.8, 22, and 44 nm, and with varying MgO thicknesses (1.0, 1.3, and 1.6 nm). Through time-domain thermoreflectance (TDTR) measurements and thermal modeling, we extract the intrinsic (∼3.6 W m<sup>-1</sup> K<sup>-1</sup>) and effective (∼0.85 W m<sup>-1</sup> K<sup>-1</sup>) thermal conductivities of annealed 1.0 nm thick MgO at room temperature. Our study reveals the thermal properties of ultrathin MgO tunnel barriers, especially the role of thermal boundary resistance, and contributes to a more precise thermal analysis of MTJs to improve the design and reliability of MRAM technologies.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Characterization of Ultrathin MgO Tunnel Barriers.\",\"authors\":\"Haotian Su, Heungdong Kwon, Fen Xue, Noriyuki Sato, Usha Bhat, Wilman Tsai, Michel Bosman, Mehdi Asheghi, Kenneth E Goodson, Eric Pop, Shan X Wang\",\"doi\":\"10.1021/acs.nanolett.4c02571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic tunnel junctions (MTJs) with ultrathin MgO tunnel barriers are at the heart of magnetic random-access memory (MRAM) and exhibit potential for spin caloritronics applications due to the tunnel magneto-Seebeck effect. However, the high programming current in MRAM can cause substantial heating which degrades the endurance and reliability of MTJs. Here, we report the thermal characterization of ultrathin CoFeB/MgO multilayers with total thicknesses of 4.4, 8.8, 22, and 44 nm, and with varying MgO thicknesses (1.0, 1.3, and 1.6 nm). Through time-domain thermoreflectance (TDTR) measurements and thermal modeling, we extract the intrinsic (∼3.6 W m<sup>-1</sup> K<sup>-1</sup>) and effective (∼0.85 W m<sup>-1</sup> K<sup>-1</sup>) thermal conductivities of annealed 1.0 nm thick MgO at room temperature. Our study reveals the thermal properties of ultrathin MgO tunnel barriers, especially the role of thermal boundary resistance, and contributes to a more precise thermal analysis of MTJs to improve the design and reliability of MRAM technologies.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02571\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02571","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有超薄氧化镁隧道势垒的磁隧道结(MTJ)是磁性随机存取存储器(MRAM)的核心,由于隧道磁-塞贝克效应,MTJ 在自旋热电子学应用方面具有潜力。然而,MRAM 中的高编程电流会导致大量发热,从而降低 MTJ 的耐用性和可靠性。在此,我们报告了总厚度为 4.4、8.8、22 和 44 nm,氧化镁厚度为 1.0、1.3 和 1.6 nm 的超薄 CoFeB/MgO 多层膜的热特性。通过时域热反射(TDTR)测量和热建模,我们提取了室温下退火的 1.0 nm 厚氧化镁的固有热导率(∼ 3.6 W m-1 K-1)和有效热导率(∼ 0.85 W m-1 K-1)。我们的研究揭示了超薄氧化镁隧道势垒的热特性,尤其是热边界电阻的作用,有助于对 MTJ 进行更精确的热分析,从而改进 MRAM 技术的设计和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal Characterization of Ultrathin MgO Tunnel Barriers.

Thermal Characterization of Ultrathin MgO Tunnel Barriers.

Magnetic tunnel junctions (MTJs) with ultrathin MgO tunnel barriers are at the heart of magnetic random-access memory (MRAM) and exhibit potential for spin caloritronics applications due to the tunnel magneto-Seebeck effect. However, the high programming current in MRAM can cause substantial heating which degrades the endurance and reliability of MTJs. Here, we report the thermal characterization of ultrathin CoFeB/MgO multilayers with total thicknesses of 4.4, 8.8, 22, and 44 nm, and with varying MgO thicknesses (1.0, 1.3, and 1.6 nm). Through time-domain thermoreflectance (TDTR) measurements and thermal modeling, we extract the intrinsic (∼3.6 W m-1 K-1) and effective (∼0.85 W m-1 K-1) thermal conductivities of annealed 1.0 nm thick MgO at room temperature. Our study reveals the thermal properties of ultrathin MgO tunnel barriers, especially the role of thermal boundary resistance, and contributes to a more precise thermal analysis of MTJs to improve the design and reliability of MRAM technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信