Rizliya Visvanathan, Dang Truong Le, Sushil Dhital, Topul Rali, Rohan A Davis, Gary Williamson
{"title":"白藜芦醇低聚物对人类唾液和胰腺α-淀粉酶的抑制作用","authors":"Rizliya Visvanathan, Dang Truong Le, Sushil Dhital, Topul Rali, Rohan A Davis, Gary Williamson","doi":"10.1021/acs.jmedchem.4c01042","DOIUrl":null,"url":null,"abstract":"<p><p>A key strategy to mitigate postprandial hyperglycemia involves inhibiting α-amylases, which commence the starch digestion process in the gut. This study examined the inhibitory effects of resveratrol and stilbenoid tetramers, vaticanol B, (-)-hopeaphenol, and vatalbinoside A on human salivary and pancreatic α-amylases experimentally and through molecular docking studies. Vaticanol B demonstrated the most potent inhibition with IC<sub>50</sub> values of 5.3 ± 0.3 μM for salivary and 6.1 ± 0.5 μM for pancreatic α-amylase (compared to acarbose with IC<sub>50</sub> values of 1.2 ± 0.1 μM and 0.5 ± 0.0 μM, respectively). Kinetic analysis suggested a competitive inhibition mode for vaticanol B. Resveratrol and vatalbinoside A were poor inhibitors of human α-amylases, while (-)-hopeaphenol exhibited moderate inhibition. Molecular docking supported the inhibition data, and several aspects of the structural configurations explained the stronger inhibition exerted by vaticanol B. Overall, vaticanol B shows promise as a natural alternative to acarbose for inhibiting α-amylase.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Human Salivary and Pancreatic α-Amylase by Resveratrol Oligomers.\",\"authors\":\"Rizliya Visvanathan, Dang Truong Le, Sushil Dhital, Topul Rali, Rohan A Davis, Gary Williamson\",\"doi\":\"10.1021/acs.jmedchem.4c01042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A key strategy to mitigate postprandial hyperglycemia involves inhibiting α-amylases, which commence the starch digestion process in the gut. This study examined the inhibitory effects of resveratrol and stilbenoid tetramers, vaticanol B, (-)-hopeaphenol, and vatalbinoside A on human salivary and pancreatic α-amylases experimentally and through molecular docking studies. Vaticanol B demonstrated the most potent inhibition with IC<sub>50</sub> values of 5.3 ± 0.3 μM for salivary and 6.1 ± 0.5 μM for pancreatic α-amylase (compared to acarbose with IC<sub>50</sub> values of 1.2 ± 0.1 μM and 0.5 ± 0.0 μM, respectively). Kinetic analysis suggested a competitive inhibition mode for vaticanol B. Resveratrol and vatalbinoside A were poor inhibitors of human α-amylases, while (-)-hopeaphenol exhibited moderate inhibition. Molecular docking supported the inhibition data, and several aspects of the structural configurations explained the stronger inhibition exerted by vaticanol B. Overall, vaticanol B shows promise as a natural alternative to acarbose for inhibiting α-amylase.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01042\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01042","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
缓解餐后高血糖的一个关键策略是抑制α-淀粉酶,因为α-淀粉酶会启动肠道中的淀粉消化过程。本研究通过实验和分子对接研究,考察了白藜芦醇和类橙皮甙四聚体、黄烷醇 B、(-)-厚朴酚和黄烷醇甙 A 对人类唾液和胰腺中的α-淀粉酶的抑制作用。Vaticanol B 的抑制作用最强,对唾液α-淀粉酶的 IC50 值为 5.3 ± 0.3 μM,对胰腺α-淀粉酶的 IC50 值为 6.1 ± 0.5 μM(相比之下,阿卡波糖的 IC50 值分别为 1.2 ± 0.1 μM 和 0.5 ± 0.0 μM)。动力学分析表明,白藜芦醇和白藜芦醇苷 A 对人类 α 淀粉酶的抑制作用较弱,而 (-)-hopeaphenol 则表现出中等程度的抑制作用。分子对接支持了抑制数据,结构构型的几个方面解释了龙脑香烷醇 B 产生更强抑制作用的原因。
Inhibition of Human Salivary and Pancreatic α-Amylase by Resveratrol Oligomers.
A key strategy to mitigate postprandial hyperglycemia involves inhibiting α-amylases, which commence the starch digestion process in the gut. This study examined the inhibitory effects of resveratrol and stilbenoid tetramers, vaticanol B, (-)-hopeaphenol, and vatalbinoside A on human salivary and pancreatic α-amylases experimentally and through molecular docking studies. Vaticanol B demonstrated the most potent inhibition with IC50 values of 5.3 ± 0.3 μM for salivary and 6.1 ± 0.5 μM for pancreatic α-amylase (compared to acarbose with IC50 values of 1.2 ± 0.1 μM and 0.5 ± 0.0 μM, respectively). Kinetic analysis suggested a competitive inhibition mode for vaticanol B. Resveratrol and vatalbinoside A were poor inhibitors of human α-amylases, while (-)-hopeaphenol exhibited moderate inhibition. Molecular docking supported the inhibition data, and several aspects of the structural configurations explained the stronger inhibition exerted by vaticanol B. Overall, vaticanol B shows promise as a natural alternative to acarbose for inhibiting α-amylase.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.