用于产生 H2O2 的双电子水氧化反应的电催化剂的表面-界面工程设计

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhen Chen, Xi Liu, Kun Wang, Lin Yang, Yi Wang, Xin Wang, Shuqin Song, Zhongwei Chen
{"title":"用于产生 H2O2 的双电子水氧化反应的电催化剂的表面-界面工程设计","authors":"Zhen Chen,&nbsp;Xi Liu,&nbsp;Kun Wang,&nbsp;Lin Yang,&nbsp;Yi Wang,&nbsp;Xin Wang,&nbsp;Shuqin Song,&nbsp;Zhongwei Chen","doi":"10.1002/adfm.202413243","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical two-electron water oxidation reaction (2e<sup>−</sup> WOR) driven by renewable energy offers an attractive route to produce H<sub>2</sub>O<sub>2</sub>, while the corresponding electrocatalyst still requires further improvement for the activity, selectivity, and the resulting H<sub>2</sub>O<sub>2</sub> yield. Surface-interface engineering of electrocatalysts has great potential to advance 2e<sup>−</sup> WOR performance. This review provides a succinct yet comprehensive insight into the functional mechanisms of surface-interfacial properties affecting 2e<sup>−</sup> WOR performance on electrocatalyst. The Gibbs free energy theoretical framework related to surface electronic structure and interfacial reactive kinetics mechanism related to electrolyte, electrode–electrolyte interface structure, and interfacial microenvironment properties are firstly discussed. Afterward, various surface-interface engineering strategies toward high performance electrocatalysts including the regulation of surface electronic structure, the electrode–electrolyte interface structure, and the interfacial microenvironment have been overviewed. Rational manipulations of the above surface-interfacial engineering strategies are critical to design highly efficient 2e<sup>−</sup> WOR electrocatalysts, leading to the development of the green H<sub>2</sub>O<sub>2</sub> production.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 3","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2\",\"authors\":\"Zhen Chen,&nbsp;Xi Liu,&nbsp;Kun Wang,&nbsp;Lin Yang,&nbsp;Yi Wang,&nbsp;Xin Wang,&nbsp;Shuqin Song,&nbsp;Zhongwei Chen\",\"doi\":\"10.1002/adfm.202413243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical two-electron water oxidation reaction (2e<sup>−</sup> WOR) driven by renewable energy offers an attractive route to produce H<sub>2</sub>O<sub>2</sub>, while the corresponding electrocatalyst still requires further improvement for the activity, selectivity, and the resulting H<sub>2</sub>O<sub>2</sub> yield. Surface-interface engineering of electrocatalysts has great potential to advance 2e<sup>−</sup> WOR performance. This review provides a succinct yet comprehensive insight into the functional mechanisms of surface-interfacial properties affecting 2e<sup>−</sup> WOR performance on electrocatalyst. The Gibbs free energy theoretical framework related to surface electronic structure and interfacial reactive kinetics mechanism related to electrolyte, electrode–electrolyte interface structure, and interfacial microenvironment properties are firstly discussed. Afterward, various surface-interface engineering strategies toward high performance electrocatalysts including the regulation of surface electronic structure, the electrode–electrolyte interface structure, and the interfacial microenvironment have been overviewed. Rational manipulations of the above surface-interfacial engineering strategies are critical to design highly efficient 2e<sup>−</sup> WOR electrocatalysts, leading to the development of the green H<sub>2</sub>O<sub>2</sub> production.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202413243\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202413243","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由可再生能源驱动的电化学双电子水氧化反应(2e- WOR)为生产 H2O2 提供了一条极具吸引力的途径,而相应的电催化剂在活性、选择性和 H2O2 产率方面仍需进一步改进。电催化剂的表面-界面工程在提高 2e- WOR 性能方面具有巨大潜力。本综述简明而全面地介绍了影响电催化剂 2e- WOR 性能的表面界面特性的功能机制。首先讨论了与表面电子结构相关的吉布斯自由能理论框架,以及与电解质、电极-电解质界面结构和界面微环境特性相关的界面反应动力学机制。随后,概述了实现高性能电催化剂的各种表面-界面工程策略,包括调节表面电子结构、电解质-电解质界面结构和界面微环境。合理操纵上述表面-界面工程策略对于设计出高效的 2e- WOR 电催化剂,从而开发出绿色 H2O2 生产技术至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2

Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2

Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2

Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2

Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2

Surface-Interface Engineering of Electrocatalysts for Two-Electron Water Oxidation Reaction to Produce H2O2

Electrochemical two-electron water oxidation reaction (2e WOR) driven by renewable energy offers an attractive route to produce H2O2, while the corresponding electrocatalyst still requires further improvement for the activity, selectivity, and the resulting H2O2 yield. Surface-interface engineering of electrocatalysts has great potential to advance 2e WOR performance. This review provides a succinct yet comprehensive insight into the functional mechanisms of surface-interfacial properties affecting 2e WOR performance on electrocatalyst. The Gibbs free energy theoretical framework related to surface electronic structure and interfacial reactive kinetics mechanism related to electrolyte, electrode–electrolyte interface structure, and interfacial microenvironment properties are firstly discussed. Afterward, various surface-interface engineering strategies toward high performance electrocatalysts including the regulation of surface electronic structure, the electrode–electrolyte interface structure, and the interfacial microenvironment have been overviewed. Rational manipulations of the above surface-interfacial engineering strategies are critical to design highly efficient 2e WOR electrocatalysts, leading to the development of the green H2O2 production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信