{"title":"质子转移的新发现:瞬态特征复合体的光谱和动力学特征","authors":"Niklas Sülzner","doi":"10.1016/j.chempr.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the long-lasting research on proton transfer as a fundamental chemical reaction, not all details regarding its precise mechanism have been revealed. Particularly, a complete spectroscopic and kinetic characterization of all intermediates remains challenging. In the September issue of <em>Cell Reports Physical Science</em>, Lee et al. identify a transient Eigen complex and determine the molecularity of each elementary step.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 11","pages":"Pages 3276-3278"},"PeriodicalIF":19.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex\",\"authors\":\"Niklas Sülzner\",\"doi\":\"10.1016/j.chempr.2024.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the long-lasting research on proton transfer as a fundamental chemical reaction, not all details regarding its precise mechanism have been revealed. Particularly, a complete spectroscopic and kinetic characterization of all intermediates remains challenging. In the September issue of <em>Cell Reports Physical Science</em>, Lee et al. identify a transient Eigen complex and determine the molecularity of each elementary step.</div></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"10 11\",\"pages\":\"Pages 3276-3278\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424005436\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424005436","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尽管对质子转移这一基本化学反应的研究持续了很长时间,但有关其精确机理的所有细节仍未得到揭示。特别是,对所有中间产物进行完整的光谱和动力学表征仍然具有挑战性。在 9 月份的《细胞报告-物理科学》(Cell Reports Physical Science)杂志上,Lee 等人确定了一个瞬态 Eigen 复合物,并确定了每个基本步骤的分子性。
New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex
Despite the long-lasting research on proton transfer as a fundamental chemical reaction, not all details regarding its precise mechanism have been revealed. Particularly, a complete spectroscopic and kinetic characterization of all intermediates remains challenging. In the September issue of Cell Reports Physical Science, Lee et al. identify a transient Eigen complex and determine the molecularity of each elementary step.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.