Rundong Zhao, Qiuyu Yan, Ling Lu, Lihong Yu, Huang Chen, Tian Yan, Le Liu, Jingyu Xi
{"title":"在具有双活性位点的 Co@Cu NW 上通过脉冲电催化将亚硝酸盐还原成氨气","authors":"Rundong Zhao, Qiuyu Yan, Ling Lu, Lihong Yu, Huang Chen, Tian Yan, Le Liu, Jingyu Xi","doi":"10.1021/acscatal.4c03782","DOIUrl":null,"url":null,"abstract":"As a potential alternative to the Haber–Bosch process for ammonia (NH<sub>3</sub>) synthesis, the electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) has attracted extensive attention. The electrocatalytic conversion of NO<sub>3</sub><sup>–</sup> to NH<sub>3</sub> involves a complex 8e<sup>–</sup> reaction with various byproducts. By decomposing the overall reaction into a 2e<sup>–</sup> process from NO<sub>3</sub><sup>–</sup> to NO<sub>2</sub><sup>–</sup> and a 6e<sup>–</sup> process from NO<sub>2</sub><sup>–</sup> to NH<sub>3</sub>, the two-step reaction can be strategically optimized to achieve efficient tandem catalysis. This work developed a NO<sub>2</sub><sup>–</sup>-mediated pulsed electrocatalytic NO<sub>3</sub>RR by Co@Cu nanowire (NW) with dual active sites of the Co phase and Cu phase. The Cu phase rapidly accumulates NO<sub>2</sub><sup>–</sup> at low potentials, while the Co phase efficiently converts NO<sub>2</sub><sup>–</sup> to NH<sub>3</sub> at high potentials, completing a time-separated tandem catalytic reaction. Ultimately, the Co@Cu NW achieved a maximum NH<sub>3</sub> yield rate of 5148.6 μg·h<sup>–1</sup>·cm<sup>–2</sup> and a maximum Faraday efficiency of 88.6% under pulsed potentials of −0.2 and −0.7 V versus the reversible hydrogen electrode in an electrolyte of 0.5 M SO<sub>4</sub><sup>2–</sup> and 0.1 M NO<sub>3</sub><sup>–</sup>. Furthermore, <i>in situ</i> reflection absorption imaging and <i>in situ</i> total internal reflection imaging revealed that the pulsed strategy effectively enhances the utilization of NO<sub>2</sub><sup>–</sup> and suppresses competitive hydrogen evolution reaction, thereby improving NO<sub>3</sub>RR performance.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrite-Mediated Pulsed Electrocatalytic Nitrate Reduction to Ammonia over Co@Cu NW with Dual Active Sites\",\"authors\":\"Rundong Zhao, Qiuyu Yan, Ling Lu, Lihong Yu, Huang Chen, Tian Yan, Le Liu, Jingyu Xi\",\"doi\":\"10.1021/acscatal.4c03782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a potential alternative to the Haber–Bosch process for ammonia (NH<sub>3</sub>) synthesis, the electrocatalytic nitrate reduction reaction (NO<sub>3</sub>RR) has attracted extensive attention. The electrocatalytic conversion of NO<sub>3</sub><sup>–</sup> to NH<sub>3</sub> involves a complex 8e<sup>–</sup> reaction with various byproducts. By decomposing the overall reaction into a 2e<sup>–</sup> process from NO<sub>3</sub><sup>–</sup> to NO<sub>2</sub><sup>–</sup> and a 6e<sup>–</sup> process from NO<sub>2</sub><sup>–</sup> to NH<sub>3</sub>, the two-step reaction can be strategically optimized to achieve efficient tandem catalysis. This work developed a NO<sub>2</sub><sup>–</sup>-mediated pulsed electrocatalytic NO<sub>3</sub>RR by Co@Cu nanowire (NW) with dual active sites of the Co phase and Cu phase. The Cu phase rapidly accumulates NO<sub>2</sub><sup>–</sup> at low potentials, while the Co phase efficiently converts NO<sub>2</sub><sup>–</sup> to NH<sub>3</sub> at high potentials, completing a time-separated tandem catalytic reaction. Ultimately, the Co@Cu NW achieved a maximum NH<sub>3</sub> yield rate of 5148.6 μg·h<sup>–1</sup>·cm<sup>–2</sup> and a maximum Faraday efficiency of 88.6% under pulsed potentials of −0.2 and −0.7 V versus the reversible hydrogen electrode in an electrolyte of 0.5 M SO<sub>4</sub><sup>2–</sup> and 0.1 M NO<sub>3</sub><sup>–</sup>. Furthermore, <i>in situ</i> reflection absorption imaging and <i>in situ</i> total internal reflection imaging revealed that the pulsed strategy effectively enhances the utilization of NO<sub>2</sub><sup>–</sup> and suppresses competitive hydrogen evolution reaction, thereby improving NO<sub>3</sub>RR performance.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c03782\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c03782","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nitrite-Mediated Pulsed Electrocatalytic Nitrate Reduction to Ammonia over Co@Cu NW with Dual Active Sites
As a potential alternative to the Haber–Bosch process for ammonia (NH3) synthesis, the electrocatalytic nitrate reduction reaction (NO3RR) has attracted extensive attention. The electrocatalytic conversion of NO3– to NH3 involves a complex 8e– reaction with various byproducts. By decomposing the overall reaction into a 2e– process from NO3– to NO2– and a 6e– process from NO2– to NH3, the two-step reaction can be strategically optimized to achieve efficient tandem catalysis. This work developed a NO2–-mediated pulsed electrocatalytic NO3RR by Co@Cu nanowire (NW) with dual active sites of the Co phase and Cu phase. The Cu phase rapidly accumulates NO2– at low potentials, while the Co phase efficiently converts NO2– to NH3 at high potentials, completing a time-separated tandem catalytic reaction. Ultimately, the Co@Cu NW achieved a maximum NH3 yield rate of 5148.6 μg·h–1·cm–2 and a maximum Faraday efficiency of 88.6% under pulsed potentials of −0.2 and −0.7 V versus the reversible hydrogen electrode in an electrolyte of 0.5 M SO42– and 0.1 M NO3–. Furthermore, in situ reflection absorption imaging and in situ total internal reflection imaging revealed that the pulsed strategy effectively enhances the utilization of NO2– and suppresses competitive hydrogen evolution reaction, thereby improving NO3RR performance.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.