Daniil Khrennikov, Victor Labuntsov, Konstantin Ladutenko, Ivan Terekhov, Andrey Bogdanov, Hans Ågren, Sergey Karpov
{"title":"超细金属纳米粒子的独特等离子吸收特性:体积压缩和溢出效应的统一与竞争","authors":"Daniil Khrennikov, Victor Labuntsov, Konstantin Ladutenko, Ivan Terekhov, Andrey Bogdanov, Hans Ågren, Sergey Karpov","doi":"10.1515/nanoph-2024-0475","DOIUrl":null,"url":null,"abstract":"We present a solution to a longstanding challenge in nanoplasmonics and colloid chemistry: the anomalous optical absorption of noble metal nanoparticles in the ultrafine size range of 2.5–10 nm, characterized by a rapid long-wavelength shift in plasmon resonance as the particle size increases. Our investigation delves into the impact of alterations in electron density along the radial direction of nanoparticles and the resulting variations in dielectric constants on the spectral positioning of the plasmon resonance. We explore the interplay of the spill-out effect, volumetric compression, and their combined impact in different experimental conditions on electron density variation within the particle volume and its blurring at the particle boundary. The latter effectively forms a surface layer with altered dielectric constants and a size-independent extent. As particle size decreases, the influence of the surface layer becomes more pronounced, especially when its extent is comparable to the particle radius. These findings are specific to ultrafine plasmonic nanoparticles and highlight their unique properties.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"5 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique features of plasmonic absorption in ultrafine metal nanoparticles: unity and rivalry of volumetric compression and spill-out effect\",\"authors\":\"Daniil Khrennikov, Victor Labuntsov, Konstantin Ladutenko, Ivan Terekhov, Andrey Bogdanov, Hans Ågren, Sergey Karpov\",\"doi\":\"10.1515/nanoph-2024-0475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a solution to a longstanding challenge in nanoplasmonics and colloid chemistry: the anomalous optical absorption of noble metal nanoparticles in the ultrafine size range of 2.5–10 nm, characterized by a rapid long-wavelength shift in plasmon resonance as the particle size increases. Our investigation delves into the impact of alterations in electron density along the radial direction of nanoparticles and the resulting variations in dielectric constants on the spectral positioning of the plasmon resonance. We explore the interplay of the spill-out effect, volumetric compression, and their combined impact in different experimental conditions on electron density variation within the particle volume and its blurring at the particle boundary. The latter effectively forms a surface layer with altered dielectric constants and a size-independent extent. As particle size decreases, the influence of the surface layer becomes more pronounced, especially when its extent is comparable to the particle radius. These findings are specific to ultrafine plasmonic nanoparticles and highlight their unique properties.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0475\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0475","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Unique features of plasmonic absorption in ultrafine metal nanoparticles: unity and rivalry of volumetric compression and spill-out effect
We present a solution to a longstanding challenge in nanoplasmonics and colloid chemistry: the anomalous optical absorption of noble metal nanoparticles in the ultrafine size range of 2.5–10 nm, characterized by a rapid long-wavelength shift in plasmon resonance as the particle size increases. Our investigation delves into the impact of alterations in electron density along the radial direction of nanoparticles and the resulting variations in dielectric constants on the spectral positioning of the plasmon resonance. We explore the interplay of the spill-out effect, volumetric compression, and their combined impact in different experimental conditions on electron density variation within the particle volume and its blurring at the particle boundary. The latter effectively forms a surface layer with altered dielectric constants and a size-independent extent. As particle size decreases, the influence of the surface layer becomes more pronounced, especially when its extent is comparable to the particle radius. These findings are specific to ultrafine plasmonic nanoparticles and highlight their unique properties.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.