Jindřich Fanfrlík, Jan Řezáč, Drahomír Hnyk and Josef Holub
{"title":"从 B2H6 到 B20H16 的形成热: Ab initio 和 DFT 方法中多中心键合的热化学后果","authors":"Jindřich Fanfrlík, Jan Řezáč, Drahomír Hnyk and Josef Holub","doi":"10.1039/D4DT02589J","DOIUrl":null,"url":null,"abstract":"<p >The objective of this study is to evaluate the effectiveness of various computational methods in reproducing the experimental heats of formation of boron hydrides using the atomization energy approach. The results have demonstrated that the empirical dispersion combined with the BJ damping function provided too large intramolecular dispersion energies, thereby compromising the accuracy of the outcomes produced by the DFT-D3 methods. Additionally, the CCSD(T) method has reproduced the experimental values only when combined with a basis set optimized for an accurate description of the core-valence correlation effect. Furthermore, the number of multicenter bonds present in the molecules under examination has also reflected their stability, as indicated by the heats of formation. Finally, a five-center two-electron (5c–2e) bond has emerged in B<small><sub>5</sub></small>H<small><sub>9</sub></small>, by applying the intrinsic bond orbital (IBO) method.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 1","pages":" 239-246"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dt/d4dt02589j?page=search","citationCount":"0","resultStr":"{\"title\":\"Heats of formation on the way from B2H6 to B20H16: thermochemical consequences of multicenter bonding in ab initio and DFT methods†\",\"authors\":\"Jindřich Fanfrlík, Jan Řezáč, Drahomír Hnyk and Josef Holub\",\"doi\":\"10.1039/D4DT02589J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The objective of this study is to evaluate the effectiveness of various computational methods in reproducing the experimental heats of formation of boron hydrides using the atomization energy approach. The results have demonstrated that the empirical dispersion combined with the BJ damping function provided too large intramolecular dispersion energies, thereby compromising the accuracy of the outcomes produced by the DFT-D3 methods. Additionally, the CCSD(T) method has reproduced the experimental values only when combined with a basis set optimized for an accurate description of the core-valence correlation effect. Furthermore, the number of multicenter bonds present in the molecules under examination has also reflected their stability, as indicated by the heats of formation. Finally, a five-center two-electron (5c–2e) bond has emerged in B<small><sub>5</sub></small>H<small><sub>9</sub></small>, by applying the intrinsic bond orbital (IBO) method.</p>\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\" 1\",\"pages\":\" 239-246\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dt/d4dt02589j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d4dt02589j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dt/d4dt02589j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Heats of formation on the way from B2H6 to B20H16: thermochemical consequences of multicenter bonding in ab initio and DFT methods†
The objective of this study is to evaluate the effectiveness of various computational methods in reproducing the experimental heats of formation of boron hydrides using the atomization energy approach. The results have demonstrated that the empirical dispersion combined with the BJ damping function provided too large intramolecular dispersion energies, thereby compromising the accuracy of the outcomes produced by the DFT-D3 methods. Additionally, the CCSD(T) method has reproduced the experimental values only when combined with a basis set optimized for an accurate description of the core-valence correlation effect. Furthermore, the number of multicenter bonds present in the molecules under examination has also reflected their stability, as indicated by the heats of formation. Finally, a five-center two-electron (5c–2e) bond has emerged in B5H9, by applying the intrinsic bond orbital (IBO) method.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.