Wei Wang , Jing Wang , Wenting Li , Guangjian Liao , Yuan Qiu , Guochuan Yin , Yonggui Liao , Xiaolin Xie
{"title":"具有优异拉伸性能的生物质基主链发光液晶共聚物的发射色取决于成分","authors":"Wei Wang , Jing Wang , Wenting Li , Guangjian Liao , Yuan Qiu , Guochuan Yin , Yonggui Liao , Xiaolin Xie","doi":"10.1039/d4py00946k","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid crystalline polymers with multicolor emission have attracted great attention in view of their great potential applications such as light-emitting diodes and information storage devices. However, luminescent liquid crystalline polymers (LLCPs) still have disadvantages involving single emission color, low solid-state emission efficiency, and poor mechanical properties. Herein, a series of main-chain LLCPs were obtained by the melt polycondensation of biobased dimethyl 2,2′-bifuran-5,5′-dicarboxylate (BFDCE), AIE-active α-cyanostilbene (<em>Z</em>-CS), and 1,6-hexanediol. Based on the Förster resonance energy transfer (FRET) effect between bifuran and <em>Z</em>-CS moieties, the emission colors of these LLCPs can be continuously tuned from blue to cyan, and then to green by changing the feed molar ratio of BFDCE and <em>Z</em>-CS, which can be applied in the visualization of latent fingerprints. Owing to the introduction of the rigid bifuran, the melt-pressed thin films from these main-chain LLCPs exhibit excellent tensile ductility (233%–332%), tensile strength (25.7–45.0 MPa), and medium Young's modulus (329–1028 MPa). Under 365 nm UV irradiation, the <em>Z</em>-CS chromophores in the main chain can undergo an irreversible [2 + 2] cyclization in the film state. Accordingly, the ‘QR code’ information and fluorescence pattern can be directly printed on the melt-pressed films instead of employing the common supporting substrates such as quartz and poly(ethylene terephthalate), paving a way for the development of anti-counterfeiting and information storage technologies.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 46","pages":"Pages 4721-4731"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition-dependent emission colors for biomass-based main-chain luminescent liquid crystalline copolyesters with excellent tensile properties†\",\"authors\":\"Wei Wang , Jing Wang , Wenting Li , Guangjian Liao , Yuan Qiu , Guochuan Yin , Yonggui Liao , Xiaolin Xie\",\"doi\":\"10.1039/d4py00946k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liquid crystalline polymers with multicolor emission have attracted great attention in view of their great potential applications such as light-emitting diodes and information storage devices. However, luminescent liquid crystalline polymers (LLCPs) still have disadvantages involving single emission color, low solid-state emission efficiency, and poor mechanical properties. Herein, a series of main-chain LLCPs were obtained by the melt polycondensation of biobased dimethyl 2,2′-bifuran-5,5′-dicarboxylate (BFDCE), AIE-active α-cyanostilbene (<em>Z</em>-CS), and 1,6-hexanediol. Based on the Förster resonance energy transfer (FRET) effect between bifuran and <em>Z</em>-CS moieties, the emission colors of these LLCPs can be continuously tuned from blue to cyan, and then to green by changing the feed molar ratio of BFDCE and <em>Z</em>-CS, which can be applied in the visualization of latent fingerprints. Owing to the introduction of the rigid bifuran, the melt-pressed thin films from these main-chain LLCPs exhibit excellent tensile ductility (233%–332%), tensile strength (25.7–45.0 MPa), and medium Young's modulus (329–1028 MPa). Under 365 nm UV irradiation, the <em>Z</em>-CS chromophores in the main chain can undergo an irreversible [2 + 2] cyclization in the film state. Accordingly, the ‘QR code’ information and fluorescence pattern can be directly printed on the melt-pressed films instead of employing the common supporting substrates such as quartz and poly(ethylene terephthalate), paving a way for the development of anti-counterfeiting and information storage technologies.</div></div>\",\"PeriodicalId\":100,\"journal\":{\"name\":\"Polymer Chemistry\",\"volume\":\"15 46\",\"pages\":\"Pages 4721-4731\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1759995424004017\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1759995424004017","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Composition-dependent emission colors for biomass-based main-chain luminescent liquid crystalline copolyesters with excellent tensile properties†
Liquid crystalline polymers with multicolor emission have attracted great attention in view of their great potential applications such as light-emitting diodes and information storage devices. However, luminescent liquid crystalline polymers (LLCPs) still have disadvantages involving single emission color, low solid-state emission efficiency, and poor mechanical properties. Herein, a series of main-chain LLCPs were obtained by the melt polycondensation of biobased dimethyl 2,2′-bifuran-5,5′-dicarboxylate (BFDCE), AIE-active α-cyanostilbene (Z-CS), and 1,6-hexanediol. Based on the Förster resonance energy transfer (FRET) effect between bifuran and Z-CS moieties, the emission colors of these LLCPs can be continuously tuned from blue to cyan, and then to green by changing the feed molar ratio of BFDCE and Z-CS, which can be applied in the visualization of latent fingerprints. Owing to the introduction of the rigid bifuran, the melt-pressed thin films from these main-chain LLCPs exhibit excellent tensile ductility (233%–332%), tensile strength (25.7–45.0 MPa), and medium Young's modulus (329–1028 MPa). Under 365 nm UV irradiation, the Z-CS chromophores in the main chain can undergo an irreversible [2 + 2] cyclization in the film state. Accordingly, the ‘QR code’ information and fluorescence pattern can be directly printed on the melt-pressed films instead of employing the common supporting substrates such as quartz and poly(ethylene terephthalate), paving a way for the development of anti-counterfeiting and information storage technologies.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.