克级绿色合成高稳定性阳离子共价有机框架,用于高效和选择性去除 ReO4-/99TcO4-

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Changxia Li, Justyna Florek, Patrick Guggenberger and Freddy Kleitz
{"title":"克级绿色合成高稳定性阳离子共价有机框架,用于高效和选择性去除 ReO4-/99TcO4-","authors":"Changxia Li, Justyna Florek, Patrick Guggenberger and Freddy Kleitz","doi":"10.1039/D4TA06442A","DOIUrl":null,"url":null,"abstract":"<p >Covalent organic frameworks (COFs) have developed as efficient and selective adsorbents to mitigate <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> contamination. However, the eco-friendly and scalable production of COF-based adsorbents for the removal of <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> has not yet been reported. This study explores the potential of a cationic COF (TpDB-COF) synthesized <em>via</em> a green hydrothermal method, achieving gram-scale yields per batch, thereby addressing a significant limitation of existing COF production methods. The TpDB-COF demonstrates an exceptional stability in strongly acidic conditions (2 weeks in 3 M HNO<small><sub>3</sub></small>), as well as in various organic solvents, making it suitable for harsh nuclear waste environments. Adsorption experiments using ReO<small><sub>4</sub></small><small><sup>−</sup></small> as a surrogate for <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> show rapid adsorption kinetics, reaching nearly 100% removal efficiency within 1 min (with initial concentration of 28 ppm at a solid-to-liquid ratio of 1 g L<small><sup>−1</sup></small>), a maximum adsorption capacity of 570 mg g<small><sup>−1</sup></small> and excellent stability. Moreover, the COF maintains high selectivity for ReO<small><sub>4</sub></small><small><sup>−</sup></small> even in the presence of competing anions such as SO<small><sub>4</sub></small><small><sup>2−</sup></small> and NO<small><sub>3</sub></small><small><sup>−</sup></small>. These findings highlight that the hydrothermal synthesis is an effective method to synthesize COF adsorbents for efficient removal of <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> and offers a sustainable approach for practical applications.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 1","pages":" 214-219"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta06442a?page=search","citationCount":"0","resultStr":"{\"title\":\"Gram-scale green synthesis of a highly stable cationic covalent organic framework for efficient and selective removal of ReO4−/99TcO4−†\",\"authors\":\"Changxia Li, Justyna Florek, Patrick Guggenberger and Freddy Kleitz\",\"doi\":\"10.1039/D4TA06442A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Covalent organic frameworks (COFs) have developed as efficient and selective adsorbents to mitigate <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> contamination. However, the eco-friendly and scalable production of COF-based adsorbents for the removal of <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> has not yet been reported. This study explores the potential of a cationic COF (TpDB-COF) synthesized <em>via</em> a green hydrothermal method, achieving gram-scale yields per batch, thereby addressing a significant limitation of existing COF production methods. The TpDB-COF demonstrates an exceptional stability in strongly acidic conditions (2 weeks in 3 M HNO<small><sub>3</sub></small>), as well as in various organic solvents, making it suitable for harsh nuclear waste environments. Adsorption experiments using ReO<small><sub>4</sub></small><small><sup>−</sup></small> as a surrogate for <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> show rapid adsorption kinetics, reaching nearly 100% removal efficiency within 1 min (with initial concentration of 28 ppm at a solid-to-liquid ratio of 1 g L<small><sup>−1</sup></small>), a maximum adsorption capacity of 570 mg g<small><sup>−1</sup></small> and excellent stability. Moreover, the COF maintains high selectivity for ReO<small><sub>4</sub></small><small><sup>−</sup></small> even in the presence of competing anions such as SO<small><sub>4</sub></small><small><sup>2−</sup></small> and NO<small><sub>3</sub></small><small><sup>−</sup></small>. These findings highlight that the hydrothermal synthesis is an effective method to synthesize COF adsorbents for efficient removal of <small><sup>99</sup></small>TcO<small><sub>4</sub></small><small><sup>−</sup></small> and offers a sustainable approach for practical applications.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 1\",\"pages\":\" 214-219\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d4ta06442a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta06442a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d4ta06442a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)已发展成为一种高效且具有选择性的吸附剂,可用于减轻 99TcO4- 的污染。然而,以 COF 为基础的用于去除 99TcO4- 的生态友好型可扩展吸附剂的生产尚未见报道。本研究探讨了通过绿色水热法合成阳离子 COF(TpDB-COF)的潜力,每批产量达到克级,从而解决了现有 COF 生产方法的一个重大局限。TpDB-COF 在强酸性条件下(3 M HNO3 中 2 周)和各种有机溶剂中均表现出卓越的稳定性,使其适用于苛刻的核废料环境。使用 99ReO4- 作为 99TcO4- 的替代物进行的吸附实验表明,这种材料具有快速的吸附动力学特性,在 1 分钟内就能达到接近 100% 的去除效率,最大吸附容量为 570 mg g-1,而且具有出色的稳定性。此外,即使存在 SO42- 和 NO3- 等竞争阴离子,COF 对 ReO4- 也能保持较高的选择性。这些发现突出表明,水热合成法是合成 COF 吸附剂以有效去除 99TcO4- 的有效方法,并为实际应用提供了一种可持续的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gram-scale green synthesis of a highly stable cationic covalent organic framework for efficient and selective removal of ReO4−/99TcO4−†

Gram-scale green synthesis of a highly stable cationic covalent organic framework for efficient and selective removal of ReO4−/99TcO4−†

Covalent organic frameworks (COFs) have developed as efficient and selective adsorbents to mitigate 99TcO4 contamination. However, the eco-friendly and scalable production of COF-based adsorbents for the removal of 99TcO4 has not yet been reported. This study explores the potential of a cationic COF (TpDB-COF) synthesized via a green hydrothermal method, achieving gram-scale yields per batch, thereby addressing a significant limitation of existing COF production methods. The TpDB-COF demonstrates an exceptional stability in strongly acidic conditions (2 weeks in 3 M HNO3), as well as in various organic solvents, making it suitable for harsh nuclear waste environments. Adsorption experiments using ReO4 as a surrogate for 99TcO4 show rapid adsorption kinetics, reaching nearly 100% removal efficiency within 1 min (with initial concentration of 28 ppm at a solid-to-liquid ratio of 1 g L−1), a maximum adsorption capacity of 570 mg g−1 and excellent stability. Moreover, the COF maintains high selectivity for ReO4 even in the presence of competing anions such as SO42− and NO3. These findings highlight that the hydrothermal synthesis is an effective method to synthesize COF adsorbents for efficient removal of 99TcO4 and offers a sustainable approach for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信