{"title":"预测高能材料对外部压力敏感性的半经验参数","authors":"Zhi-Xin Bai, Wei Zeng, Cheng-Lu Jiang, Fu-Sheng Liu, Zheng-Tang Liu, Qi-Jun Liu","doi":"10.1016/j.cej.2024.157415","DOIUrl":null,"url":null,"abstract":"Measuring the ability of a material to absorb energy from an external stimulus is crucial for understanding the sensitivity mechanism of energetic materials (EMs). Based on this, a semi-empirical parameter, <em>M</em>, is proposed to measure the material’s ability to absorb energy from an external stimulus, which is closely related to zero-point energy and volume. In this work, taking the external pressures (P) of 0.1 and 1.0 GPa as examples, we calculate the value of <em>M</em> for 16 EMs, and discuss the relationship between <em>M</em> and the impact sensitivity of EMs (<em>E</em><sub>50</sub>). Considering the indispensable influence of molecular structure on the impact sensitivity of EMs, 16 EMs are divided into Groups A and B according to their structure whether contains a benzene ring. We find that the correlation between <em>M</em><sub>0</sub> and <em>E</em><sub>50</sub> when P is 0.1 GPa is less than that when P is 1.0 GPa. Therefore, the parameter <em>M</em><sub>0</sub> has been modified by adding the initial zero-point energy, and the modified parameter is referred to as <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.293ex; margin-bottom: -0.289ex;\" viewbox=\"0 -747.2 1424.4 997.6\" width=\"3.308ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(970,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msub></math></script></span>. The correlation between <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.293ex; margin-bottom: -0.289ex;\" viewbox=\"0 -747.2 1424.4 997.6\" width=\"3.308ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(970,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msub></math></script></span> and <em>E</em><sub>50</sub> is further improved compared with <em>M</em><sub>0</sub>. In particular, for Group B, the correlation between <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.317ex\" role=\"img\" style=\"vertical-align: -0.293ex; margin-bottom: -0.289ex;\" viewbox=\"0 -747.2 1424.4 997.6\" width=\"3.308ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(970,-150)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">M</mi><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msub></math></script></span> and <em>E</em><sub>50</sub> is good, where R<sup>2</sup> is 0.95 and PCCs is 0.97 when P is 1.0 GPa, and R<sup>2</sup> is 0.87 and PCCs is 0.92 when P is 0.1 GPa.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-empirical parameter predicting the sensitivity of energetic materials from external pressure\",\"authors\":\"Zhi-Xin Bai, Wei Zeng, Cheng-Lu Jiang, Fu-Sheng Liu, Zheng-Tang Liu, Qi-Jun Liu\",\"doi\":\"10.1016/j.cej.2024.157415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring the ability of a material to absorb energy from an external stimulus is crucial for understanding the sensitivity mechanism of energetic materials (EMs). Based on this, a semi-empirical parameter, <em>M</em>, is proposed to measure the material’s ability to absorb energy from an external stimulus, which is closely related to zero-point energy and volume. In this work, taking the external pressures (P) of 0.1 and 1.0 GPa as examples, we calculate the value of <em>M</em> for 16 EMs, and discuss the relationship between <em>M</em> and the impact sensitivity of EMs (<em>E</em><sub>50</sub>). Considering the indispensable influence of molecular structure on the impact sensitivity of EMs, 16 EMs are divided into Groups A and B according to their structure whether contains a benzene ring. We find that the correlation between <em>M</em><sub>0</sub> and <em>E</em><sub>50</sub> when P is 0.1 GPa is less than that when P is 1.0 GPa. Therefore, the parameter <em>M</em><sub>0</sub> has been modified by adding the initial zero-point energy, and the modified parameter is referred to as <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.293ex; margin-bottom: -0.289ex;\\\" viewbox=\\\"0 -747.2 1424.4 997.6\\\" width=\\\"3.308ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-4D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(970,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msub></math></script></span>. The correlation between <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.293ex; margin-bottom: -0.289ex;\\\" viewbox=\\\"0 -747.2 1424.4 997.6\\\" width=\\\"3.308ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-4D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(970,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msub></math></script></span> and <em>E</em><sub>50</sub> is further improved compared with <em>M</em><sub>0</sub>. In particular, for Group B, the correlation between <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">&#x2217;</mo></mrow></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.317ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.293ex; margin-bottom: -0.289ex;\\\" viewbox=\\\"0 -747.2 1424.4 997.6\\\" width=\\\"3.308ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-4D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(970,-150)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2217\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">M</mi><mrow is=\\\"true\\\"><mo is=\\\"true\\\">∗</mo></mrow></msub></math></script></span> and <em>E</em><sub>50</sub> is good, where R<sup>2</sup> is 0.95 and PCCs is 0.97 when P is 1.0 GPa, and R<sup>2</sup> is 0.87 and PCCs is 0.92 when P is 0.1 GPa.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157415\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157415","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
测量材料吸收外部刺激能量的能力对于了解高能材料(EMs)的敏感机制至关重要。在此基础上,提出了一个半经验参数 M 来测量材料吸收外部刺激能量的能力,该参数与零点能量和体积密切相关。本文以 0.1 和 1.0 GPa 的外部压力 (P) 为例,计算了 16 种电磁材料的 M 值,并讨论了 M 与电磁材料冲击灵敏度 (E50) 之间的关系。考虑到分子结构对电磁撞击灵敏度的影响不可或缺,我们将 16 种电磁按是否含有苯环的结构分为 A 组和 B 组。我们发现,当 P 值为 0.1 GPa 时,M0 与 E50 之间的相关性小于 P 值为 1.0 GPa 时的相关性。因此,通过增加初始零点能对参数 M0 进行了修改,修改后的参数称为 M∗M∗。与 M0 相比,M∗M∗ 和 E50 之间的相关性进一步提高。特别是对于 B 组,M∗M∗ 和 E50 之间的相关性很好,当 P 为 1.0 GPa 时,R2 为 0.95,PCCs 为 0.97;当 P 为 0.1 GPa 时,R2 为 0.87,PCCs 为 0.92。
A semi-empirical parameter predicting the sensitivity of energetic materials from external pressure
Measuring the ability of a material to absorb energy from an external stimulus is crucial for understanding the sensitivity mechanism of energetic materials (EMs). Based on this, a semi-empirical parameter, M, is proposed to measure the material’s ability to absorb energy from an external stimulus, which is closely related to zero-point energy and volume. In this work, taking the external pressures (P) of 0.1 and 1.0 GPa as examples, we calculate the value of M for 16 EMs, and discuss the relationship between M and the impact sensitivity of EMs (E50). Considering the indispensable influence of molecular structure on the impact sensitivity of EMs, 16 EMs are divided into Groups A and B according to their structure whether contains a benzene ring. We find that the correlation between M0 and E50 when P is 0.1 GPa is less than that when P is 1.0 GPa. Therefore, the parameter M0 has been modified by adding the initial zero-point energy, and the modified parameter is referred to as . The correlation between and E50 is further improved compared with M0. In particular, for Group B, the correlation between and E50 is good, where R2 is 0.95 and PCCs is 0.97 when P is 1.0 GPa, and R2 is 0.87 and PCCs is 0.92 when P is 0.1 GPa.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.