Jan Langmann, Georg Eickerling, Lilian Prodan, Alexander A. Tsirlin, Maximilian Winkler, Sándor Bordács, Vladimir Tsurkan, Istvan Kézsmárki
{"title":"无机晶体中的原子级极性螺旋","authors":"Jan Langmann, Georg Eickerling, Lilian Prodan, Alexander A. Tsirlin, Maximilian Winkler, Sándor Bordács, Vladimir Tsurkan, Istvan Kézsmárki","doi":"10.1021/acs.chemmater.4c02060","DOIUrl":null,"url":null,"abstract":"Chiral structures, noncentrosymmetric objects with a given handedness, emerge on all scales in nature. The most well-known chiral form, <i>the helix</i>, has numerous materializations not only on the microscopic scale (DNA, cholesteric liquid crystals, and spin helices) but also on macroscopic and even cosmological scales. The ongoing quest for new types of chiral structures is fueled by a wide range of fascinating phenomena observed in chiral materials, such as nonreciprocal transport and optical processes, electro-optical effects, and chiral amplification and induction. Here, we report a novel route to chirality in antipolar GaTa<sub>4</sub>Se<sub>8</sub> crystals, where the rotation of the electric polarization vector through the unit cell traces out a helix. The determination of atomic positions using X-ray diffraction combined with ab initio calculations reveals that quasi-molecular Ta<sub>4</sub>Se<sub>4</sub> clusters distort upon a phase transition and evoke significant local electric polarization within structural layers of the unit cell. This polarization is found to rotate in 90° steps between neighboring layers, either clockwise or anticlockwise. A similar analysis performed on two archetypal chiral compounds, α-quartz and tellurium, implies that antipolar crystals with screw-axis symmetry may generally host atomic-scale polarization helices with emergent functionalities.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic-Scale Polar Helix in Inorganic Crystals\",\"authors\":\"Jan Langmann, Georg Eickerling, Lilian Prodan, Alexander A. Tsirlin, Maximilian Winkler, Sándor Bordács, Vladimir Tsurkan, Istvan Kézsmárki\",\"doi\":\"10.1021/acs.chemmater.4c02060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chiral structures, noncentrosymmetric objects with a given handedness, emerge on all scales in nature. The most well-known chiral form, <i>the helix</i>, has numerous materializations not only on the microscopic scale (DNA, cholesteric liquid crystals, and spin helices) but also on macroscopic and even cosmological scales. The ongoing quest for new types of chiral structures is fueled by a wide range of fascinating phenomena observed in chiral materials, such as nonreciprocal transport and optical processes, electro-optical effects, and chiral amplification and induction. Here, we report a novel route to chirality in antipolar GaTa<sub>4</sub>Se<sub>8</sub> crystals, where the rotation of the electric polarization vector through the unit cell traces out a helix. The determination of atomic positions using X-ray diffraction combined with ab initio calculations reveals that quasi-molecular Ta<sub>4</sub>Se<sub>4</sub> clusters distort upon a phase transition and evoke significant local electric polarization within structural layers of the unit cell. This polarization is found to rotate in 90° steps between neighboring layers, either clockwise or anticlockwise. A similar analysis performed on two archetypal chiral compounds, α-quartz and tellurium, implies that antipolar crystals with screw-axis symmetry may generally host atomic-scale polarization helices with emergent functionalities.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c02060\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
手性结构,即具有特定手性的非中心对称物体,出现在自然界的各个尺度上。最著名的手性形式--螺旋,不仅在微观尺度上(DNA、胆甾液晶和自旋螺旋),而且在宏观甚至宇宙尺度上都有许多具体化。在手性材料中观察到的各种奇妙现象,如非互惠传输和光学过程、电光效应以及手性放大和诱导等,推动了人们对新型手性结构的不断探索。在这里,我们报告了一条在反极性 GaTa4Se8 晶体中实现手性的新途径,在这种晶体中,电偏振矢量通过单位晶胞的旋转描绘出一条螺旋线。利用 X 射线衍射测定原子位置并结合 ab initio 计算发现,准分子 Ta4Se4 团簇在相变时会发生扭曲,并在单位晶胞的结构层内产生显著的局部电极化。研究发现,这种极化在相邻层之间以 90° 为单位顺时针或逆时针旋转。对两种典型手性化合物--α-石英和碲--进行的类似分析表明,具有螺轴对称性的反极性晶体通常可能含有具有新兴功能的原子级极化螺旋。
Chiral structures, noncentrosymmetric objects with a given handedness, emerge on all scales in nature. The most well-known chiral form, the helix, has numerous materializations not only on the microscopic scale (DNA, cholesteric liquid crystals, and spin helices) but also on macroscopic and even cosmological scales. The ongoing quest for new types of chiral structures is fueled by a wide range of fascinating phenomena observed in chiral materials, such as nonreciprocal transport and optical processes, electro-optical effects, and chiral amplification and induction. Here, we report a novel route to chirality in antipolar GaTa4Se8 crystals, where the rotation of the electric polarization vector through the unit cell traces out a helix. The determination of atomic positions using X-ray diffraction combined with ab initio calculations reveals that quasi-molecular Ta4Se4 clusters distort upon a phase transition and evoke significant local electric polarization within structural layers of the unit cell. This polarization is found to rotate in 90° steps between neighboring layers, either clockwise or anticlockwise. A similar analysis performed on two archetypal chiral compounds, α-quartz and tellurium, implies that antipolar crystals with screw-axis symmetry may generally host atomic-scale polarization helices with emergent functionalities.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.