Ki-Seok Kim, Arpita Mitra, Debangshu Mukherjee, Mitsuhiro Nishida
{"title":"ADM 超表面上的全局位移对称性:迈向新兴引力","authors":"Ki-Seok Kim, Arpita Mitra, Debangshu Mukherjee, Mitsuhiro Nishida","doi":"10.1103/physrevd.110.106002","DOIUrl":null,"url":null,"abstract":"Generalized symmetries and their spontaneous breakdown serve as the fundamental concept to constrain the many-body entanglement structure, which allows us to characterize quantum phases of matter and emergent collective excitations. For example, emergent photons may be understood by spontaneous 1-form symmetry breaking, which results from a long-ranged entanglement structure between UV microscopic degrees of freedom. In this study, we show that emergent “gravity” may also arise in a similar fashion, where quotes have been used to emphasize that the symmetry-constrained gravitons show unconventional properties compared to usual gravitons. As the electric 1-form symmetry in Maxwell theory is realized as a global shift symmetry of the spatial component of the <mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 5 (4 1 2 3))\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"normal upper U left parenthesis 1 right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> gauge field, generated by the electric field, we demonstrate that a constant shift of the Arnowitt-Deser-Misner (ADM) metric on the spatial hypersurface can be viewed as a global symmetry, generated by the ADM canonical momentum. Deriving a vector-type conserved charge from the variation of action, we construct a shift symmetry operator. Considering a Wick rotation, we demonstrate that a gravitational Wilson loop is charged under the action of this shift symmetry operator, which thus confirms the existence of a generalized global symmetry on the ADM hypersurface. Based on the Ward identity, we show that the spontaneous breaking of this global shift symmetry may give rise to a nonpropagating massless symmetric gauge field at the boundary of the hypersurface.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"36 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global shift symmetry on an ADM hypersurface: Toward emergent gravity\",\"authors\":\"Ki-Seok Kim, Arpita Mitra, Debangshu Mukherjee, Mitsuhiro Nishida\",\"doi\":\"10.1103/physrevd.110.106002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized symmetries and their spontaneous breakdown serve as the fundamental concept to constrain the many-body entanglement structure, which allows us to characterize quantum phases of matter and emergent collective excitations. For example, emergent photons may be understood by spontaneous 1-form symmetry breaking, which results from a long-ranged entanglement structure between UV microscopic degrees of freedom. In this study, we show that emergent “gravity” may also arise in a similar fashion, where quotes have been used to emphasize that the symmetry-constrained gravitons show unconventional properties compared to usual gravitons. As the electric 1-form symmetry in Maxwell theory is realized as a global shift symmetry of the spatial component of the <mjx-container ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(6 0 5 (4 1 2 3))\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"0,4\\\" data-semantic-content=\\\"5,0\\\" data-semantic- data-semantic-owns=\\\"0 5 4\\\" data-semantic-role=\\\"simple function\\\" data-semantic-speech=\\\"normal upper U left parenthesis 1 right parenthesis\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>U</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"2\\\" data-semantic-content=\\\"1,3\\\" data-semantic- data-semantic-owns=\\\"1 2 3\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"vertical-align: -0.02em;\\\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> gauge field, generated by the electric field, we demonstrate that a constant shift of the Arnowitt-Deser-Misner (ADM) metric on the spatial hypersurface can be viewed as a global symmetry, generated by the ADM canonical momentum. Deriving a vector-type conserved charge from the variation of action, we construct a shift symmetry operator. Considering a Wick rotation, we demonstrate that a gravitational Wilson loop is charged under the action of this shift symmetry operator, which thus confirms the existence of a generalized global symmetry on the ADM hypersurface. Based on the Ward identity, we show that the spontaneous breaking of this global shift symmetry may give rise to a nonpropagating massless symmetric gauge field at the boundary of the hypersurface.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.106002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.106002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Global shift symmetry on an ADM hypersurface: Toward emergent gravity
Generalized symmetries and their spontaneous breakdown serve as the fundamental concept to constrain the many-body entanglement structure, which allows us to characterize quantum phases of matter and emergent collective excitations. For example, emergent photons may be understood by spontaneous 1-form symmetry breaking, which results from a long-ranged entanglement structure between UV microscopic degrees of freedom. In this study, we show that emergent “gravity” may also arise in a similar fashion, where quotes have been used to emphasize that the symmetry-constrained gravitons show unconventional properties compared to usual gravitons. As the electric 1-form symmetry in Maxwell theory is realized as a global shift symmetry of the spatial component of the U(1) gauge field, generated by the electric field, we demonstrate that a constant shift of the Arnowitt-Deser-Misner (ADM) metric on the spatial hypersurface can be viewed as a global symmetry, generated by the ADM canonical momentum. Deriving a vector-type conserved charge from the variation of action, we construct a shift symmetry operator. Considering a Wick rotation, we demonstrate that a gravitational Wilson loop is charged under the action of this shift symmetry operator, which thus confirms the existence of a generalized global symmetry on the ADM hypersurface. Based on the Ward identity, we show that the spontaneous breaking of this global shift symmetry may give rise to a nonpropagating massless symmetric gauge field at the boundary of the hypersurface.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.