初始张量构造和张量重正化群对初始张量的依赖性

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Katsumasa Nakayama, Manuel Schneider
{"title":"初始张量构造和张量重正化群对初始张量的依赖性","authors":"Katsumasa Nakayama, Manuel Schneider","doi":"10.1103/physrevd.110.094501","DOIUrl":null,"url":null,"abstract":"We propose a method to construct a tensor network representation of partition functions without singular value decompositions nor series expansions. The approach is demonstrated for one- and two-dimensional Ising models and we study the dependence of the tensor renormalization group (TRG) on the form of the initial tensors and their symmetries. We further introduce variants of several tensor renormalization algorithms. Our benchmarks reveal a significant dependence of various TRG algorithms on the choice of initial tensors and their symmetries. However, we show that the boundary TRG technique can eliminate the initial tensor dependence for all TRG methods. The numerical results of TRG calculations can thus be made significantly more robust with only a few changes in the code. Furthermore, we study a three-dimensional <mjx-container ctxtmenu_counter=\"94\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> gauge theory without gauge fixing and confirm the applicability of the initial tensor construction. Our method can straightforwardly be applied to systems with longer range and multisite interactions, such as the next-nearest neighbor Ising model.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"32 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial tensor construction and dependence of the tensor renormalization group on initial tensors\",\"authors\":\"Katsumasa Nakayama, Manuel Schneider\",\"doi\":\"10.1103/physrevd.110.094501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to construct a tensor network representation of partition functions without singular value decompositions nor series expansions. The approach is demonstrated for one- and two-dimensional Ising models and we study the dependence of the tensor renormalization group (TRG) on the form of the initial tensors and their symmetries. We further introduce variants of several tensor renormalization algorithms. Our benchmarks reveal a significant dependence of various TRG algorithms on the choice of initial tensors and their symmetries. However, we show that the boundary TRG technique can eliminate the initial tensor dependence for all TRG methods. The numerical results of TRG calculations can thus be made significantly more robust with only a few changes in the code. Furthermore, we study a three-dimensional <mjx-container ctxtmenu_counter=\\\"94\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(2 0 1)\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-speech=\\\"double struck upper Z 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-font=\\\"double-struck\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"numbersetletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> gauge theory without gauge fixing and confirm the applicability of the initial tensor construction. Our method can straightforwardly be applied to systems with longer range and multisite interactions, such as the next-nearest neighbor Ising model.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.094501\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.094501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种无需奇异值分解或数列展开就能构建分区函数张量网络表示的方法。我们针对一维和二维伊辛模型演示了这种方法,并研究了张量重正化群(TRG)对初始张量形式及其对称性的依赖性。我们进一步介绍了几种张量重正化算法的变体。我们的基准测试表明,各种 TRG 算法对初始张量及其对称性的选择有很大的依赖性。然而,我们发现边界 TRG 技术可以消除所有 TRG 方法对初始张量的依赖。因此,只需对代码稍作修改,TRG 计算的数值结果就能显著提高稳健性。此外,我们研究了一个没有规固定的三维ℤ2规理论,证实了初始张量构造的适用性。我们的方法可以直接应用于具有长程和多址相互作用的系统,例如近邻伊辛模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Initial tensor construction and dependence of the tensor renormalization group on initial tensors

Initial tensor construction and dependence of the tensor renormalization group on initial tensors
We propose a method to construct a tensor network representation of partition functions without singular value decompositions nor series expansions. The approach is demonstrated for one- and two-dimensional Ising models and we study the dependence of the tensor renormalization group (TRG) on the form of the initial tensors and their symmetries. We further introduce variants of several tensor renormalization algorithms. Our benchmarks reveal a significant dependence of various TRG algorithms on the choice of initial tensors and their symmetries. However, we show that the boundary TRG technique can eliminate the initial tensor dependence for all TRG methods. The numerical results of TRG calculations can thus be made significantly more robust with only a few changes in the code. Furthermore, we study a three-dimensional 2 gauge theory without gauge fixing and confirm the applicability of the initial tensor construction. Our method can straightforwardly be applied to systems with longer range and multisite interactions, such as the next-nearest neighbor Ising model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信