{"title":"电子上的真空辐射压力波动","authors":"L. H. Ford","doi":"10.1103/physrevd.110.096002","DOIUrl":null,"url":null,"abstract":"This paper is a continuation of a study of the properties and applications of quantum stress tensor fluctuations. Here we treat the vacuum fluctuations of the electromagnetic energy-momentum flux operator which has been averaged in space and time. The probability distribution of these fluctuations depends upon the details of this averaging and may allow fluctuations very large compared to the variance. The possibility of detecting their effects on electrons will be considered. The averaging of the flux operator will arise from the interaction of an electron with a wave packet containing real photons. The vacuum radiation pressure fluctuations can exert a force on the electron in any direction, in contrast to the effect of scattering by real photons. Some numerical estimates of the effect will be given.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"138 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacuum radiation pressure fluctuations on electrons\",\"authors\":\"L. H. Ford\",\"doi\":\"10.1103/physrevd.110.096002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is a continuation of a study of the properties and applications of quantum stress tensor fluctuations. Here we treat the vacuum fluctuations of the electromagnetic energy-momentum flux operator which has been averaged in space and time. The probability distribution of these fluctuations depends upon the details of this averaging and may allow fluctuations very large compared to the variance. The possibility of detecting their effects on electrons will be considered. The averaging of the flux operator will arise from the interaction of an electron with a wave packet containing real photons. The vacuum radiation pressure fluctuations can exert a force on the electron in any direction, in contrast to the effect of scattering by real photons. Some numerical estimates of the effect will be given.\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.110.096002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.096002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Vacuum radiation pressure fluctuations on electrons
This paper is a continuation of a study of the properties and applications of quantum stress tensor fluctuations. Here we treat the vacuum fluctuations of the electromagnetic energy-momentum flux operator which has been averaged in space and time. The probability distribution of these fluctuations depends upon the details of this averaging and may allow fluctuations very large compared to the variance. The possibility of detecting their effects on electrons will be considered. The averaging of the flux operator will arise from the interaction of an electron with a wave packet containing real photons. The vacuum radiation pressure fluctuations can exert a force on the electron in any direction, in contrast to the effect of scattering by real photons. Some numerical estimates of the effect will be given.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.