{"title":"大功率氮化镓基蓝色激光二极管的降解研究与抗老化解决方案","authors":"Enming Zhang, Yue Zeng, Wenyu Kang, Zhibai Zhong, Yushou Wang, Tongwei Yan, Shaohua Huang, Zhongying Zhang, Kechuang Lin, Junyong Kang","doi":"10.1002/adpr.202400119","DOIUrl":null,"url":null,"abstract":"<p>Gallium nitride (GaN)-based semiconductor laser diodes (LDs) have garnered significant attention due to their promising applications. However, high-power LDs face serious degradation issues that limit their practical use. This study investigates the degradation factors of 437 nm and 6.3 W LDs by comparing light–current–voltage (L–I–V) characteristics, transmission electron microscopy (TEM), cathodoluminescence (CL), and secondary ion mass spectroscopy (SIMS) before and after 1000-h aging. The diffusion of mirror coating from the resonant cavity surface is identified as a key factor contributing to high-power LD degradation, which has not been reported in milliwatt-level LDs. Meanwhile, the mechanisms behind the LD degradation are profiled and summarized together with the diffusion and other factors. On basis of the mechanism exploration, an anti-aging technology for high-power GaN-based LDs is developed by using aluminum nitride for passivation layer and sapphire materials for mirror film. This anti-aging technology has been verified, and a nearly ten-time degradation suppression is achieved from 1000 h. This study elucidates the degradation mechanisms of high-power GaN LDs and provides an effective technology to extend their lifespan, thereby prompting the practical applications of high-power LDs.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400119","citationCount":"0","resultStr":"{\"title\":\"High-Power GaN-Based Blue Laser Diodes Degradation Investigation and Anti-aging Solution\",\"authors\":\"Enming Zhang, Yue Zeng, Wenyu Kang, Zhibai Zhong, Yushou Wang, Tongwei Yan, Shaohua Huang, Zhongying Zhang, Kechuang Lin, Junyong Kang\",\"doi\":\"10.1002/adpr.202400119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gallium nitride (GaN)-based semiconductor laser diodes (LDs) have garnered significant attention due to their promising applications. However, high-power LDs face serious degradation issues that limit their practical use. This study investigates the degradation factors of 437 nm and 6.3 W LDs by comparing light–current–voltage (L–I–V) characteristics, transmission electron microscopy (TEM), cathodoluminescence (CL), and secondary ion mass spectroscopy (SIMS) before and after 1000-h aging. The diffusion of mirror coating from the resonant cavity surface is identified as a key factor contributing to high-power LD degradation, which has not been reported in milliwatt-level LDs. Meanwhile, the mechanisms behind the LD degradation are profiled and summarized together with the diffusion and other factors. On basis of the mechanism exploration, an anti-aging technology for high-power GaN-based LDs is developed by using aluminum nitride for passivation layer and sapphire materials for mirror film. This anti-aging technology has been verified, and a nearly ten-time degradation suppression is achieved from 1000 h. This study elucidates the degradation mechanisms of high-power GaN LDs and provides an effective technology to extend their lifespan, thereby prompting the practical applications of high-power LDs.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Power GaN-Based Blue Laser Diodes Degradation Investigation and Anti-aging Solution
Gallium nitride (GaN)-based semiconductor laser diodes (LDs) have garnered significant attention due to their promising applications. However, high-power LDs face serious degradation issues that limit their practical use. This study investigates the degradation factors of 437 nm and 6.3 W LDs by comparing light–current–voltage (L–I–V) characteristics, transmission electron microscopy (TEM), cathodoluminescence (CL), and secondary ion mass spectroscopy (SIMS) before and after 1000-h aging. The diffusion of mirror coating from the resonant cavity surface is identified as a key factor contributing to high-power LD degradation, which has not been reported in milliwatt-level LDs. Meanwhile, the mechanisms behind the LD degradation are profiled and summarized together with the diffusion and other factors. On basis of the mechanism exploration, an anti-aging technology for high-power GaN-based LDs is developed by using aluminum nitride for passivation layer and sapphire materials for mirror film. This anti-aging technology has been verified, and a nearly ten-time degradation suppression is achieved from 1000 h. This study elucidates the degradation mechanisms of high-power GaN LDs and provides an effective technology to extend their lifespan, thereby prompting the practical applications of high-power LDs.