Pierre Koleják, Geoffrey Lezier, Daniel Vala, Baptiste Mathmann, Lukáš Halagačka, Zuzana Gelnárová, Yannick Dusch, Jean-François Lampin, Nicolas Tiercelin, Kamil Postava, Mathias Vanwolleghem
{"title":"最大化自旋电子太赫兹发射器的电磁效率","authors":"Pierre Koleják, Geoffrey Lezier, Daniel Vala, Baptiste Mathmann, Lukáš Halagačka, Zuzana Gelnárová, Yannick Dusch, Jean-François Lampin, Nicolas Tiercelin, Kamil Postava, Mathias Vanwolleghem","doi":"10.1002/adpr.202400064","DOIUrl":null,"url":null,"abstract":"<p>\nOptically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400064","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters\",\"authors\":\"Pierre Koleják, Geoffrey Lezier, Daniel Vala, Baptiste Mathmann, Lukáš Halagačka, Zuzana Gelnárová, Yannick Dusch, Jean-François Lampin, Nicolas Tiercelin, Kamil Postava, Mathias Vanwolleghem\",\"doi\":\"10.1002/adpr.202400064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nOptically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters
Optically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.