最大化自旋电子太赫兹发射器的电磁效率

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pierre Koleják, Geoffrey Lezier, Daniel Vala, Baptiste Mathmann, Lukáš Halagačka, Zuzana Gelnárová, Yannick Dusch, Jean-François Lampin, Nicolas Tiercelin, Kamil Postava, Mathias Vanwolleghem
{"title":"最大化自旋电子太赫兹发射器的电磁效率","authors":"Pierre Koleják,&nbsp;Geoffrey Lezier,&nbsp;Daniel Vala,&nbsp;Baptiste Mathmann,&nbsp;Lukáš Halagačka,&nbsp;Zuzana Gelnárová,&nbsp;Yannick Dusch,&nbsp;Jean-François Lampin,&nbsp;Nicolas Tiercelin,&nbsp;Kamil Postava,&nbsp;Mathias Vanwolleghem","doi":"10.1002/adpr.202400064","DOIUrl":null,"url":null,"abstract":"<p>\nOptically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400064","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters\",\"authors\":\"Pierre Koleják,&nbsp;Geoffrey Lezier,&nbsp;Daniel Vala,&nbsp;Baptiste Mathmann,&nbsp;Lukáš Halagačka,&nbsp;Zuzana Gelnárová,&nbsp;Yannick Dusch,&nbsp;Jean-François Lampin,&nbsp;Nicolas Tiercelin,&nbsp;Kamil Postava,&nbsp;Mathias Vanwolleghem\",\"doi\":\"10.1002/adpr.202400064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nOptically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光泵浦自旋电子太赫兹发射器(STE)具有傅里叶限制的超快响应、无声子发射光谱和与波长无关的操作等特点,在不到十年的时间里对太赫兹(THz)信号源技术产生了重大影响。然而,制约这些设备的反自旋霍尔效应的内在强度带来了一个挑战:光到太赫兹的转换效率大大低于传统源。因此,在不考虑自旋动力学作用的情况下,至少最大限度地提高电磁效率是最基本的要求。通过对电磁产生和提取过程进行严格的时域处理,提出了一种优化设计,并得到了实验证实。与已报道的最强自旋电子太赫兹发射器相比,它实现了发射太赫兹场 250% 的增强,因此发射功率增加了 8 dB。这一实验成果使 STE 接近毫瓦级的象征性障碍。该设计策略一般适用于任何类型的超快自旋-电荷转换(S2C)系统。在更广泛的层面上,我们的工作突出了如何严格处理太赫兹自旋电子器件的纯电磁方面,从而发现其运行中被忽视的方面,并带来实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters

Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters

Optically pumped spintronic terahertz emitters (STEs) have, in less than a decade, strongly impacted terahertz (THz) source technology, by the combination of their Fourier-limited ultrafast response, their phononless emission spectrum and their wavelength-independent operation. However, the intrinsic strength of the inverse spin Hall effect governing these devices introduces a challenge: the optical-to-terahertz conversion efficiency is considerably lower than traditional sources. It is therefore primordial to maximize at least their electromagnetic efficiency independently of the spin dynamics at play. Using a rigorous time-domain treatment of the electromagnetic generation and extraction processes, an optimized design is presented and experimentally confirmed. With respect to the strongest reported spintronic THz emitters it achieves a 250% enhancement of the emitted THz field and therefore an 8 dB increase of emitted power. This experimental achievement brings STE close to the symbolic barrier of mW levels. The design strategy is generically applicable to any kind of ultrafast spin-to-charge conversion (S2C) system. On a broader level, our work highlights how a rigorous handling of the purely electromagnetic aspects of THz spintronic devices can uncover overlooked aspects of their operation and lead to substantial improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信