逆问题变分法和机器学习方法的稳健性和探索:综述

Q1 Mathematics
Alexander Auras, Kanchana Vaishnavi Gandikota, Hannah Droege, Michael Moeller
{"title":"逆问题变分法和机器学习方法的稳健性和探索:综述","authors":"Alexander Auras,&nbsp;Kanchana Vaishnavi Gandikota,&nbsp;Hannah Droege,&nbsp;Michael Moeller","doi":"10.1002/gamm.202470003","DOIUrl":null,"url":null,"abstract":"<p>This paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one-dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data-consistent solutions through explicit guidance to satisfy specific semantic or textural properties.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"47 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470003","citationCount":"0","resultStr":"{\"title\":\"Robustness and exploration of variational and machine learning approaches to inverse problems: An overview\",\"authors\":\"Alexander Auras,&nbsp;Kanchana Vaishnavi Gandikota,&nbsp;Hannah Droege,&nbsp;Michael Moeller\",\"doi\":\"10.1002/gamm.202470003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one-dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data-consistent solutions through explicit guidance to satisfy specific semantic or textural properties.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了当前利用变分法和机器学习解决成像逆问题的方法。本文特别关注点估计器及其对对抗性扰动的鲁棒性。在此背景下,论文提供了针对一维玩具问题的数值实验结果,展示了不同方法的鲁棒性,并从经验上验证了理论保证。本综述的另一个重点是通过明确的指导来探索数据一致解的子空间,以满足特定的语义或纹理特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robustness and exploration of variational and machine learning approaches to inverse problems: An overview

Robustness and exploration of variational and machine learning approaches to inverse problems: An overview

This paper provides an overview of current approaches for solving inverse problems in imaging using variational methods and machine learning. A special focus lies on point estimators and their robustness against adversarial perturbations. In this context results of numerical experiments for a one-dimensional toy problem are provided, showing the robustness of different approaches and empirically verifying theoretical guarantees. Another focus of this review is the exploration of the subspace of data-consistent solutions through explicit guidance to satisfy specific semantic or textural properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信