多相膜中尺度模型的数学分析

Q1 Mathematics
Jakob Fuchs, Matthias Röger
{"title":"多相膜中尺度模型的数学分析","authors":"Jakob Fuchs,&nbsp;Matthias Röger","doi":"10.1002/gamm.202470009","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce a mesoscale continuum model for membranes made of two different types of amphiphilic lipids. The model extends work by Peletier and the second author (<i>Arch. Ration. Mech. Anal. 193</i>, 2009) for the one-phase case. We present a mathematical analysis of the asymptotic reduction to the macroscale when a key length parameter becomes arbitrarily small. We identify two main contributions in the energy: one that can be connected to bending of the overall structure and a second that describes the cost of the internal phase separations. We prove the <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation>$$ \\Gamma $$</annotation>\n </semantics></math>-convergence towards a perimeter functional for the phase separation energy and construct, in two dimensions, recovery sequences for the convergence of the full energy towards a 2D reduction of the Jülicher–Lipowsky bending energy with a line tension contribution for phase separated hypersurfaces.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"47 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470009","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of a mesoscale model for multiphase membranes\",\"authors\":\"Jakob Fuchs,&nbsp;Matthias Röger\",\"doi\":\"10.1002/gamm.202470009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce a mesoscale continuum model for membranes made of two different types of amphiphilic lipids. The model extends work by Peletier and the second author (<i>Arch. Ration. Mech. Anal. 193</i>, 2009) for the one-phase case. We present a mathematical analysis of the asymptotic reduction to the macroscale when a key length parameter becomes arbitrarily small. We identify two main contributions in the energy: one that can be connected to bending of the overall structure and a second that describes the cost of the internal phase separations. We prove the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation>$$ \\\\Gamma $$</annotation>\\n </semantics></math>-convergence towards a perimeter functional for the phase separation energy and construct, in two dimensions, recovery sequences for the convergence of the full energy towards a 2D reduction of the Jülicher–Lipowsky bending energy with a line tension contribution for phase separated hypersurfaces.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"47 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了由两种不同类型的两亲脂质构成的膜的中尺度连续模型。该模型扩展了 Peletier 和第二位作者(Arch. Ration. Mech. Anal. 193, 2009)针对单相情况所做的工作。我们介绍了当关键长度参数变得任意小时,渐进还原到宏观尺度的数学分析。我们确定了能量的两个主要贡献:一个与整体结构的弯曲有关,另一个描述了内部相分离的代价。我们证明了相分离能量与周长函数的Γ $ \Gamma $ -收敛性,并在二维维度上构建了恢复序列,用于将全部能量收敛到具有相分离超表面线张力贡献的尤利歇尔-利波斯基弯曲能量的二维还原。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mathematical analysis of a mesoscale model for multiphase membranes

Mathematical analysis of a mesoscale model for multiphase membranes

In this article, we introduce a mesoscale continuum model for membranes made of two different types of amphiphilic lipids. The model extends work by Peletier and the second author (Arch. Ration. Mech. Anal. 193, 2009) for the one-phase case. We present a mathematical analysis of the asymptotic reduction to the macroscale when a key length parameter becomes arbitrarily small. We identify two main contributions in the energy: one that can be connected to bending of the overall structure and a second that describes the cost of the internal phase separations. We prove the Γ $$ \Gamma $$ -convergence towards a perimeter functional for the phase separation energy and construct, in two dimensions, recovery sequences for the convergence of the full energy towards a 2D reduction of the Jülicher–Lipowsky bending energy with a line tension contribution for phase separated hypersurfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信