{"title":"使用改性铜镁(OH)2 电极电催化还原硝酸盐","authors":"Nadia Ait Ahmed, Katia Hebbache, Samia Kerakra, Nabila Aliouane, Marielle Eyraud","doi":"10.1007/s13738-024-03115-6","DOIUrl":null,"url":null,"abstract":"<div><p>In order to improve the activity of copper (Cu) towards electrolytic reduction of nitrate, thin films of magnesium hydroxide (Mg(OH)<sub>2</sub>) were deposited on Cu substrate. For the first time, these films were synthesized by electrochemical deposition in a potassium sulfate bath containing Mg<sup>2+</sup> at 70 °C. The effect of various experimental parameters, such as deposition time and potential, on the electrocatalytic activity for the nitrate reduction was investigated. Surface analysis techniques (SEM, EDX and XRD) were used to get information on the morphology, the composition and the structure of the deposits. The activity of the modified electrode was studied by cyclic voltammetry, and amperometric method. The modified Mg(OH)<sub>2</sub>/Cu sensor exhibited a good electrocatalytic behavior towards the reduction of nitrates with high reproducible reduction peak currents. In addition, the sensor exhibits a linear answer for concentration in nitrate between 0.125 to 7 mM, combined with high sensitivity (24.6 µA mM<sup>−1</sup> cm<sup>−2</sup>) and limit of detection (225.35 µM) values. When common interfering molecules were added to the solution, Mg(OH)<sub>2</sub>/Cu electrodes have kept their good selectivity. They demonstrated acceptable detection levels for nitrates in tap water.</p></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 11","pages":"2829 - 2840"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic reduction of nitrate using Mg(OH)2 copper modified electrode\",\"authors\":\"Nadia Ait Ahmed, Katia Hebbache, Samia Kerakra, Nabila Aliouane, Marielle Eyraud\",\"doi\":\"10.1007/s13738-024-03115-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to improve the activity of copper (Cu) towards electrolytic reduction of nitrate, thin films of magnesium hydroxide (Mg(OH)<sub>2</sub>) were deposited on Cu substrate. For the first time, these films were synthesized by electrochemical deposition in a potassium sulfate bath containing Mg<sup>2+</sup> at 70 °C. The effect of various experimental parameters, such as deposition time and potential, on the electrocatalytic activity for the nitrate reduction was investigated. Surface analysis techniques (SEM, EDX and XRD) were used to get information on the morphology, the composition and the structure of the deposits. The activity of the modified electrode was studied by cyclic voltammetry, and amperometric method. The modified Mg(OH)<sub>2</sub>/Cu sensor exhibited a good electrocatalytic behavior towards the reduction of nitrates with high reproducible reduction peak currents. In addition, the sensor exhibits a linear answer for concentration in nitrate between 0.125 to 7 mM, combined with high sensitivity (24.6 µA mM<sup>−1</sup> cm<sup>−2</sup>) and limit of detection (225.35 µM) values. When common interfering molecules were added to the solution, Mg(OH)<sub>2</sub>/Cu electrodes have kept their good selectivity. They demonstrated acceptable detection levels for nitrates in tap water.</p></div>\",\"PeriodicalId\":676,\"journal\":{\"name\":\"Journal of the Iranian Chemical Society\",\"volume\":\"21 11\",\"pages\":\"2829 - 2840\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Iranian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13738-024-03115-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03115-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrocatalytic reduction of nitrate using Mg(OH)2 copper modified electrode
In order to improve the activity of copper (Cu) towards electrolytic reduction of nitrate, thin films of magnesium hydroxide (Mg(OH)2) were deposited on Cu substrate. For the first time, these films were synthesized by electrochemical deposition in a potassium sulfate bath containing Mg2+ at 70 °C. The effect of various experimental parameters, such as deposition time and potential, on the electrocatalytic activity for the nitrate reduction was investigated. Surface analysis techniques (SEM, EDX and XRD) were used to get information on the morphology, the composition and the structure of the deposits. The activity of the modified electrode was studied by cyclic voltammetry, and amperometric method. The modified Mg(OH)2/Cu sensor exhibited a good electrocatalytic behavior towards the reduction of nitrates with high reproducible reduction peak currents. In addition, the sensor exhibits a linear answer for concentration in nitrate between 0.125 to 7 mM, combined with high sensitivity (24.6 µA mM−1 cm−2) and limit of detection (225.35 µM) values. When common interfering molecules were added to the solution, Mg(OH)2/Cu electrodes have kept their good selectivity. They demonstrated acceptable detection levels for nitrates in tap water.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.