固态液态主客体电解质的原位选择性紫外交联制备:一步实现高柔性电致变色器件的简便方法

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Changwei Tan, Zishou Hu, Zhiyi Guo, Zheng Cui, Ling Bai, Xinzhou Wu, Chenchao Huang, Wenming Su
{"title":"固态液态主客体电解质的原位选择性紫外交联制备:一步实现高柔性电致变色器件的简便方法","authors":"Changwei Tan,&nbsp;Zishou Hu,&nbsp;Zhiyi Guo,&nbsp;Zheng Cui,&nbsp;Ling Bai,&nbsp;Xinzhou Wu,&nbsp;Chenchao Huang,&nbsp;Wenming Su","doi":"10.1007/s12274-024-6921-x","DOIUrl":null,"url":null,"abstract":"<div><p>Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9712 - 9720"},"PeriodicalIF":9.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ-selective-UV crosslinking fabrication of solid liquid host guest electrolyte: A facile one-step method realizing highly flexible electrochromic device\",\"authors\":\"Changwei Tan,&nbsp;Zishou Hu,&nbsp;Zhiyi Guo,&nbsp;Zheng Cui,&nbsp;Ling Bai,&nbsp;Xinzhou Wu,&nbsp;Chenchao Huang,&nbsp;Wenming Su\",\"doi\":\"10.1007/s12274-024-6921-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"17 11\",\"pages\":\"9712 - 9720\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12274-024-6921-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-024-6921-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性电致变色器件(FECD)具有低工作电压和低能耗的特点,是下一代可穿戴电子设备的理想候选器件。对于柔性电致变色器件来说,电解质是一个重要的组成部分。通常情况下,电解液需要根据器件结构和使用场景进行配制。高性能电解液需要考虑很多因素,包括选择合适的聚合物、溶剂、固化剂和离子类型,以满足特定设备的规格要求。本研究开发了一种紫外固化固液主-客(UV-SLHG)电解质。与完全固化的固态电解质相比,通过引入固液共存的微结构而不改变电解质配方,该电解质在多个方面的性能都得到了改善,包括出色的附着力、30% 的拉伸特性以及 7 倍的离子电导率。更重要的是,SLHG 电解质的独特优势在于弯曲过程中厚度不会发生显著变化。使用基于 UV-SLHG 的电解质制成的 FECD 在弯曲半径为 2.5 毫米的情况下可持续弯曲 10,000 次,同时保持出色的光学调制性能。我们还制作了一个可穿戴的环形 ECD 和一个无电池 FECD 酒标作为示范。UV-SLHG 策略不仅适用于 FECD,还普遍适用于柔性电容器和电池等其他基于电解质的柔性电子器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ-selective-UV crosslinking fabrication of solid liquid host guest electrolyte: A facile one-step method realizing highly flexible electrochromic device

Flexible electrochromic devices (FECDs) are promising candidates for the next generation of wearable electronics due to their low operating voltage and energy consumption. For the flexible electrochromic devices, the electrolyte is an important component. Typically, the electrolyte needs to be formulated according to the device structure and usage scenario. A high-performance electrolyte involves consideration of many factors, including choosing the right polymer, solvent, curing agent, and ion type to satisfy particular device specifications. In this work, a ultraviolet-curable solid–liquid host–guest (UV-SLHG) electrolyte is developed. Several aspects of performance are improved by introducing the solid–liquid coexisting microstructure without changing the electrolyte formulation, including excellent adhesion, a 30% increase in tensile characteristics, and a seven-fold increase in ionic conductivity when compared to a fully cured solid-state electrolyte. More importantly, the unique advantage of SLHG electrolytes lies that the thickness will not change significantly during bending. The FECD made by using the UV-SLHG-based electrolyte sustained 10,000 bending cycles at the bending radius of 2.5 mm while maintaining outstanding optical modulation. A wearable ring-type ECD and a battery-free FECD wine label were made as demonstrators. The UV-SLHG strategy is not only suitable for the FECDs but also universally applicable to other electrolyte-based of flexible electronics such as flexible capacitors and batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信