Yi Li, Haopeng Wang, Hongda Cheng, Ye Zhang, Huan Wang, Changyu Han
{"title":"耐热性、机械和流变性能更强的聚(l-内酰胺)/聚(d-内酰胺)/竹纤维(BF)生物复合材料","authors":"Yi Li, Haopeng Wang, Hongda Cheng, Ye Zhang, Huan Wang, Changyu Han","doi":"10.1007/s12221-024-00753-8","DOIUrl":null,"url":null,"abstract":"<div><p>Natural-fiber-reinforced poly(lactic acid) (PLA) is a simple and effective method to improve properties with retaining the fully biodegradability and eco-friendliness. Herein, we prepared the poly(<span>l</span>-lactic acid) (PLLA)/poly(<span>d</span>-lactic acid) (PDLA)/bamboo fiber (BF) bio-composites through melt compounding. The stereocomplex PLA (SC-PLA) was formed during the melt blending. The SC-PLA crystals combined with BFs in the PLLA/PDLA/BF bio-composites had synergistic effects that could enhance crystallization rate, rheological and mechanical properties, and heat resistance. The results showed that the SC-PLA crystals drastically increased the nucleation density and accelerated the crystallization process of the bio-composites. The rheological properties of the bio-composites were obviously enhanced by the incorporation of BFs and PDLA. Mechanical properties of the bio-composites were increased compared to neat PLLA. The bio-composite with 10 wt% PDLA showed tensile strength of 72.4 MPa, and Young’s modulus of 2855 MPa, which were 9.4% and 18% higher than those of neat PLLA, respectively. Moreover, Vicat softening temperature (VST) of the bio-composites was about 90 °C higher than that of neat PLLA. Overall, this work provides an interesting strategy of fabrication of the BFs reinforced PLA composites with controllable properties.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 11","pages":"4453 - 4467"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly(l-lactide)/poly(d-lactide)/bamboo fiber (BF) bio-composites with enhanced heat resistance, mechanical and rheological performance\",\"authors\":\"Yi Li, Haopeng Wang, Hongda Cheng, Ye Zhang, Huan Wang, Changyu Han\",\"doi\":\"10.1007/s12221-024-00753-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural-fiber-reinforced poly(lactic acid) (PLA) is a simple and effective method to improve properties with retaining the fully biodegradability and eco-friendliness. Herein, we prepared the poly(<span>l</span>-lactic acid) (PLLA)/poly(<span>d</span>-lactic acid) (PDLA)/bamboo fiber (BF) bio-composites through melt compounding. The stereocomplex PLA (SC-PLA) was formed during the melt blending. The SC-PLA crystals combined with BFs in the PLLA/PDLA/BF bio-composites had synergistic effects that could enhance crystallization rate, rheological and mechanical properties, and heat resistance. The results showed that the SC-PLA crystals drastically increased the nucleation density and accelerated the crystallization process of the bio-composites. The rheological properties of the bio-composites were obviously enhanced by the incorporation of BFs and PDLA. Mechanical properties of the bio-composites were increased compared to neat PLLA. The bio-composite with 10 wt% PDLA showed tensile strength of 72.4 MPa, and Young’s modulus of 2855 MPa, which were 9.4% and 18% higher than those of neat PLLA, respectively. Moreover, Vicat softening temperature (VST) of the bio-composites was about 90 °C higher than that of neat PLLA. Overall, this work provides an interesting strategy of fabrication of the BFs reinforced PLA composites with controllable properties.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 11\",\"pages\":\"4453 - 4467\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00753-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00753-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Poly(l-lactide)/poly(d-lactide)/bamboo fiber (BF) bio-composites with enhanced heat resistance, mechanical and rheological performance
Natural-fiber-reinforced poly(lactic acid) (PLA) is a simple and effective method to improve properties with retaining the fully biodegradability and eco-friendliness. Herein, we prepared the poly(l-lactic acid) (PLLA)/poly(d-lactic acid) (PDLA)/bamboo fiber (BF) bio-composites through melt compounding. The stereocomplex PLA (SC-PLA) was formed during the melt blending. The SC-PLA crystals combined with BFs in the PLLA/PDLA/BF bio-composites had synergistic effects that could enhance crystallization rate, rheological and mechanical properties, and heat resistance. The results showed that the SC-PLA crystals drastically increased the nucleation density and accelerated the crystallization process of the bio-composites. The rheological properties of the bio-composites were obviously enhanced by the incorporation of BFs and PDLA. Mechanical properties of the bio-composites were increased compared to neat PLLA. The bio-composite with 10 wt% PDLA showed tensile strength of 72.4 MPa, and Young’s modulus of 2855 MPa, which were 9.4% and 18% higher than those of neat PLLA, respectively. Moreover, Vicat softening temperature (VST) of the bio-composites was about 90 °C higher than that of neat PLLA. Overall, this work provides an interesting strategy of fabrication of the BFs reinforced PLA composites with controllable properties.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers