Bilal Khaled, Chaima Salmi, Iman Kir, Hamdi Ali Mohammed, Salah Eddine Laouini, Abderrhmane Bouafia, Fahad Alharthi, Johar Amin Ahmed Abdullah, Khansaa Al-Essa
{"title":"利用抗坏血酸官能化氧化铁纳米复合材料提高水溶液中染料的消除能力和抗氧化活性","authors":"Bilal Khaled, Chaima Salmi, Iman Kir, Hamdi Ali Mohammed, Salah Eddine Laouini, Abderrhmane Bouafia, Fahad Alharthi, Johar Amin Ahmed Abdullah, Khansaa Al-Essa","doi":"10.1007/s10876-024-02712-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the synthesis and characterization of iron oxide nanocomposites (Fe₃O₄/Fe₂O₃ NC) functionalized with ascorbic acid (Fe₃O₄/Fe₂O₃@AA NC) for enhanced photocatalytic and antioxidant activities. The nanocomposites were synthesized using a modified co-precipitation method and characterized by UV-visible spectroscopy, FTIR, XRD, and SEM. The photocatalytic degradation of Brilliant Cresyl Blue (BCB) and amoxicillin (AMX) under sunlight irradiation was evaluated. Results showed a remarkable degradation efficiency of 99.2% for BCB and 99.1% for AMX using Fe₃O₄/Fe₂O₃@AA NC, compared to 97% and 95% with Fe₃O₄/Fe₂O₃ NC. The rate constants for the degradation of BCB were 0.041 min⁻<sup>1</sup> for Fe₃O₄/Fe₂O₃@AA NC and 0.031 min⁻<sup>1</sup> for Fe₃O₄/Fe₂O₃ NC, while for AMX, they were 0.035 min⁻<sup>1</sup> and 0.025 min⁻<sup>1</sup>, respectively. Additionally, the antioxidant activity of Fe₃O₄/Fe₂O₃@AA NC was significantly higher, ranging from 45% to 95.25%, compared to 41.8% to 79.6% for Fe₃O₄/Fe₂O₃ NC. These findings suggest that ascorbic acid functionalization significantly enhances the photocatalytic and antioxidant properties of iron oxide nanocomposites.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3025 - 3044"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Elimination of Dyes from Aqueous Solution and Antioxidant Activity Using Ascorbic Acid-Functionalized Iron Oxide Nanocomposites\",\"authors\":\"Bilal Khaled, Chaima Salmi, Iman Kir, Hamdi Ali Mohammed, Salah Eddine Laouini, Abderrhmane Bouafia, Fahad Alharthi, Johar Amin Ahmed Abdullah, Khansaa Al-Essa\",\"doi\":\"10.1007/s10876-024-02712-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the synthesis and characterization of iron oxide nanocomposites (Fe₃O₄/Fe₂O₃ NC) functionalized with ascorbic acid (Fe₃O₄/Fe₂O₃@AA NC) for enhanced photocatalytic and antioxidant activities. The nanocomposites were synthesized using a modified co-precipitation method and characterized by UV-visible spectroscopy, FTIR, XRD, and SEM. The photocatalytic degradation of Brilliant Cresyl Blue (BCB) and amoxicillin (AMX) under sunlight irradiation was evaluated. Results showed a remarkable degradation efficiency of 99.2% for BCB and 99.1% for AMX using Fe₃O₄/Fe₂O₃@AA NC, compared to 97% and 95% with Fe₃O₄/Fe₂O₃ NC. The rate constants for the degradation of BCB were 0.041 min⁻<sup>1</sup> for Fe₃O₄/Fe₂O₃@AA NC and 0.031 min⁻<sup>1</sup> for Fe₃O₄/Fe₂O₃ NC, while for AMX, they were 0.035 min⁻<sup>1</sup> and 0.025 min⁻<sup>1</sup>, respectively. Additionally, the antioxidant activity of Fe₃O₄/Fe₂O₃@AA NC was significantly higher, ranging from 45% to 95.25%, compared to 41.8% to 79.6% for Fe₃O₄/Fe₂O₃ NC. These findings suggest that ascorbic acid functionalization significantly enhances the photocatalytic and antioxidant properties of iron oxide nanocomposites.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 8\",\"pages\":\"3025 - 3044\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02712-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02712-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Enhanced Elimination of Dyes from Aqueous Solution and Antioxidant Activity Using Ascorbic Acid-Functionalized Iron Oxide Nanocomposites
This study presents the synthesis and characterization of iron oxide nanocomposites (Fe₃O₄/Fe₂O₃ NC) functionalized with ascorbic acid (Fe₃O₄/Fe₂O₃@AA NC) for enhanced photocatalytic and antioxidant activities. The nanocomposites were synthesized using a modified co-precipitation method and characterized by UV-visible spectroscopy, FTIR, XRD, and SEM. The photocatalytic degradation of Brilliant Cresyl Blue (BCB) and amoxicillin (AMX) under sunlight irradiation was evaluated. Results showed a remarkable degradation efficiency of 99.2% for BCB and 99.1% for AMX using Fe₃O₄/Fe₂O₃@AA NC, compared to 97% and 95% with Fe₃O₄/Fe₂O₃ NC. The rate constants for the degradation of BCB were 0.041 min⁻1 for Fe₃O₄/Fe₂O₃@AA NC and 0.031 min⁻1 for Fe₃O₄/Fe₂O₃ NC, while for AMX, they were 0.035 min⁻1 and 0.025 min⁻1, respectively. Additionally, the antioxidant activity of Fe₃O₄/Fe₂O₃@AA NC was significantly higher, ranging from 45% to 95.25%, compared to 41.8% to 79.6% for Fe₃O₄/Fe₂O₃ NC. These findings suggest that ascorbic acid functionalization significantly enhances the photocatalytic and antioxidant properties of iron oxide nanocomposites.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.