Abdeldjalil Laouini, Abderrhmane Bouafia, Salah Eddine Laouini, Hamdi Ali Mohammed, Mohammed Laid Tedjani, Fahad Alharthi, Johar Amin Ahmed Abdullah
{"title":"增强抗氧化和光催化能力:可重复使用的 PEG 涂层氧化铁纳米复合材料可有效降解头孢氨苄和 BCB 染料","authors":"Abdeldjalil Laouini, Abderrhmane Bouafia, Salah Eddine Laouini, Hamdi Ali Mohammed, Mohammed Laid Tedjani, Fahad Alharthi, Johar Amin Ahmed Abdullah","doi":"10.1007/s10876-024-02716-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> nanocomposite (NC) coated with polyethylene glycol were synthesized via hydrothermal synthesis, achieving uniform particle formation and controlled crystallinity. Characterization using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX) confirmed the physical attributes and homogeneity of the nanocomposite. Polyethylene glycol-coated α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> showed a reduced crystalline size of 19.13 nm compared to 22.93 nm for uncoated nanoparticles. Optical band gap measurements revealed values of 4.64 electron volts for polyethylene glycol, 1.98 electron volts for α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC, and 3.18 electron volts for α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@polyethylene glycol nanocomposites, indicating both insulating and semiconducting behaviors. The photocatalytic performance of the polyethylene glycol-coated α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> was demonstrated by a 99.4% degradation of Brilliant Cresyl Blue (BCB) dye within 120 minutes at a concentration of 5 milligrams per milliliter, with a pseudo-first-order rate constant of 0.02047 per minute. Furthermore, the nanocomposites exhibited strong recyclability and reusability, making them viable candidates for environmental remediation. The study underscores the potential of α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC in applications such as water treatment and antioxidant therapies.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 8","pages":"3131 - 3151"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosted Antioxidant and Photocatalytic Power: Reusable PEG-Coated Iron Oxide Nanocomposites for Effective Cephalexin and BCB Dye Degradation\",\"authors\":\"Abdeldjalil Laouini, Abderrhmane Bouafia, Salah Eddine Laouini, Hamdi Ali Mohammed, Mohammed Laid Tedjani, Fahad Alharthi, Johar Amin Ahmed Abdullah\",\"doi\":\"10.1007/s10876-024-02716-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> nanocomposite (NC) coated with polyethylene glycol were synthesized via hydrothermal synthesis, achieving uniform particle formation and controlled crystallinity. Characterization using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX) confirmed the physical attributes and homogeneity of the nanocomposite. Polyethylene glycol-coated α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> showed a reduced crystalline size of 19.13 nm compared to 22.93 nm for uncoated nanoparticles. Optical band gap measurements revealed values of 4.64 electron volts for polyethylene glycol, 1.98 electron volts for α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC, and 3.18 electron volts for α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub>@polyethylene glycol nanocomposites, indicating both insulating and semiconducting behaviors. The photocatalytic performance of the polyethylene glycol-coated α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> was demonstrated by a 99.4% degradation of Brilliant Cresyl Blue (BCB) dye within 120 minutes at a concentration of 5 milligrams per milliliter, with a pseudo-first-order rate constant of 0.02047 per minute. Furthermore, the nanocomposites exhibited strong recyclability and reusability, making them viable candidates for environmental remediation. The study underscores the potential of α-Fe<sub>2</sub>O<sub>3</sub>/Fe<sub>3</sub>O<sub>4</sub> NC in applications such as water treatment and antioxidant therapies.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 8\",\"pages\":\"3131 - 3151\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02716-8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02716-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Boosted Antioxidant and Photocatalytic Power: Reusable PEG-Coated Iron Oxide Nanocomposites for Effective Cephalexin and BCB Dye Degradation
In this study, α-Fe2O3/Fe3O4 nanocomposite (NC) coated with polyethylene glycol were synthesized via hydrothermal synthesis, achieving uniform particle formation and controlled crystallinity. Characterization using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX) confirmed the physical attributes and homogeneity of the nanocomposite. Polyethylene glycol-coated α-Fe2O3/Fe3O4 showed a reduced crystalline size of 19.13 nm compared to 22.93 nm for uncoated nanoparticles. Optical band gap measurements revealed values of 4.64 electron volts for polyethylene glycol, 1.98 electron volts for α-Fe2O3/Fe3O4 NC, and 3.18 electron volts for α-Fe2O3/Fe3O4@polyethylene glycol nanocomposites, indicating both insulating and semiconducting behaviors. The photocatalytic performance of the polyethylene glycol-coated α-Fe2O3/Fe3O4 was demonstrated by a 99.4% degradation of Brilliant Cresyl Blue (BCB) dye within 120 minutes at a concentration of 5 milligrams per milliliter, with a pseudo-first-order rate constant of 0.02047 per minute. Furthermore, the nanocomposites exhibited strong recyclability and reusability, making them viable candidates for environmental remediation. The study underscores the potential of α-Fe2O3/Fe3O4 NC in applications such as water treatment and antioxidant therapies.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.