Karine Fonseca Soares de Oliveira, Joemil Oliveira de Deus Junior, Talita Lorena dado SilvaNascimento, Raoni Batista dos Anjos, Dulce Maria de Araújo Melo, Renata Martins Braga, Marcus Antonio de Freitas Melo
{"title":"将腰果壳残炭作为固定床柱中的生物吸附剂处理采出水","authors":"Karine Fonseca Soares de Oliveira, Joemil Oliveira de Deus Junior, Talita Lorena dado SilvaNascimento, Raoni Batista dos Anjos, Dulce Maria de Araújo Melo, Renata Martins Braga, Marcus Antonio de Freitas Melo","doi":"10.1007/s11270-024-07612-5","DOIUrl":null,"url":null,"abstract":"<div><p>One of the produced water treatment methods is adsorption, however, the use of commercial activated carbon as an adsorbent, in industrial scale, makes the process expensive. An alternative for replacing commercial activated carbon is the use of bioadsorbents, which have been gaining emphasis in recent decades, high performance, and low production costs. The objective of this work is to develop an efficient and low cost bioadsorbent by reusing the charcoal from the cashew nutshell (<i>Anarcadium accidentale</i> L.) for the removal of metal ions (Cu<sup>2+</sup>, Pb<sup>2+</sup> and Cr<sup>3+</sup>), oil and grease content (OGC). The bioadsorbent was pretreated with NaOH and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), point of zero charge (pHpzc) and Boehm titration. The adsorption tests involved adsorption kinetics and equilibrium experiments in a batch system using metallic solution and in a fixed bed column using multi-element metallic and semi-synthetic OGC solution. The characterization results revealed the presence of hydroxyl, carboxyl and carbonyl groups, as well as an irregular and heterogeneous structure, which are favorable characteristics for the adsorption process. The bioadsorbent was able to remove 98.9; 90.9, 77.1 and 100% for Cu<sup>2+</sup>, Pb<sup>2+</sup>, Cr<sup>3+</sup> and OGC, respectively, in a fixed bed adsorption column. It is concluded that bioadsorbent developed has high potential for removing metals and OGC, in addition to being an abundant product in nature, renewable, biodegradable and its reuse contributes to reduce environmental pollution, waste production and improves the local circular economy through the recovery of the by-product.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charcoal Residue from Cashew Nutshells as a Bioadsorbent in Fixed Bed Column for Produced Water\",\"authors\":\"Karine Fonseca Soares de Oliveira, Joemil Oliveira de Deus Junior, Talita Lorena dado SilvaNascimento, Raoni Batista dos Anjos, Dulce Maria de Araújo Melo, Renata Martins Braga, Marcus Antonio de Freitas Melo\",\"doi\":\"10.1007/s11270-024-07612-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the produced water treatment methods is adsorption, however, the use of commercial activated carbon as an adsorbent, in industrial scale, makes the process expensive. An alternative for replacing commercial activated carbon is the use of bioadsorbents, which have been gaining emphasis in recent decades, high performance, and low production costs. The objective of this work is to develop an efficient and low cost bioadsorbent by reusing the charcoal from the cashew nutshell (<i>Anarcadium accidentale</i> L.) for the removal of metal ions (Cu<sup>2+</sup>, Pb<sup>2+</sup> and Cr<sup>3+</sup>), oil and grease content (OGC). The bioadsorbent was pretreated with NaOH and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), point of zero charge (pHpzc) and Boehm titration. The adsorption tests involved adsorption kinetics and equilibrium experiments in a batch system using metallic solution and in a fixed bed column using multi-element metallic and semi-synthetic OGC solution. The characterization results revealed the presence of hydroxyl, carboxyl and carbonyl groups, as well as an irregular and heterogeneous structure, which are favorable characteristics for the adsorption process. The bioadsorbent was able to remove 98.9; 90.9, 77.1 and 100% for Cu<sup>2+</sup>, Pb<sup>2+</sup>, Cr<sup>3+</sup> and OGC, respectively, in a fixed bed adsorption column. It is concluded that bioadsorbent developed has high potential for removing metals and OGC, in addition to being an abundant product in nature, renewable, biodegradable and its reuse contributes to reduce environmental pollution, waste production and improves the local circular economy through the recovery of the by-product.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"235 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07612-5\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07612-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Charcoal Residue from Cashew Nutshells as a Bioadsorbent in Fixed Bed Column for Produced Water
One of the produced water treatment methods is adsorption, however, the use of commercial activated carbon as an adsorbent, in industrial scale, makes the process expensive. An alternative for replacing commercial activated carbon is the use of bioadsorbents, which have been gaining emphasis in recent decades, high performance, and low production costs. The objective of this work is to develop an efficient and low cost bioadsorbent by reusing the charcoal from the cashew nutshell (Anarcadium accidentale L.) for the removal of metal ions (Cu2+, Pb2+ and Cr3+), oil and grease content (OGC). The bioadsorbent was pretreated with NaOH and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), point of zero charge (pHpzc) and Boehm titration. The adsorption tests involved adsorption kinetics and equilibrium experiments in a batch system using metallic solution and in a fixed bed column using multi-element metallic and semi-synthetic OGC solution. The characterization results revealed the presence of hydroxyl, carboxyl and carbonyl groups, as well as an irregular and heterogeneous structure, which are favorable characteristics for the adsorption process. The bioadsorbent was able to remove 98.9; 90.9, 77.1 and 100% for Cu2+, Pb2+, Cr3+ and OGC, respectively, in a fixed bed adsorption column. It is concluded that bioadsorbent developed has high potential for removing metals and OGC, in addition to being an abundant product in nature, renewable, biodegradable and its reuse contributes to reduce environmental pollution, waste production and improves the local circular economy through the recovery of the by-product.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.