用于高密度储能应用的 Al2O3/TiO2 亚纳米层压板中的马克斯韦尔-瓦格纳弛豫和界面载流子约束工程†。

Partha Sarathi Padhi, Sanjay K. Rai, R. S. Ajimsha and Pankaj Misra
{"title":"用于高密度储能应用的 Al2O3/TiO2 亚纳米层压板中的马克斯韦尔-瓦格纳弛豫和界面载流子约束工程†。","authors":"Partha Sarathi Padhi, Sanjay K. Rai, R. S. Ajimsha and Pankaj Misra","doi":"10.1039/D4LF00125G","DOIUrl":null,"url":null,"abstract":"<p >The Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> nanolaminates (ATA NLs), with the dominant Maxwell–Wagner interfacial polarization, have been extensively explored in last decade due to their potential for new-generation energy storage applications. Here, we report the fabrication of device-grade sub-nanometric (&lt;1 nm) ATA NLs using an optimized pulsed laser deposition technique, where the interface-confined carrier relaxation and sublayer conductivity contrast-induced Maxwell–Wagner interfacial polarization mechanism was engineered by precisely tailoring the individual Al<small><sub>2</sub></small>O<small><sub>3</sub></small> and TiO<small><sub>2</sub></small> sublayer thickness along with the top-bottom capping layer thickness. The formation of oxygen vacancy-generated carriers in reduced titania sublayers across Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> heterointerfaces and their relative response towards the applied field were responsible for both charge storage and leakage. An NL with a TiO<small><sub>2</sub></small> and Al<small><sub>2</sub></small>O<small><sub>3</sub></small> sublayer thickness of ∼1 and 0.6 nm, respectively, sandwiched between ∼3 nm Al<small><sub>2</sub></small>O<small><sub>3</sub></small> barrier layers, has demonstrated an improved capacitance density of ∼33.1 fF μm<small><sup>−2</sup></small> and a high cut-off frequency up to ∼0.5 MHz, along with a low dielectric loss of ∼0.032 and a reduced leakage current density of ∼3.08 × 10<small><sup>−7</sup></small> A cm<small><sup>−2</sup></small> at 1 V. The calculated energy density value of ∼4.6 J cm<small><sup>−3</sup></small> achieved with this optimized subnanometric Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> laminate is comparable to those of state-of-the-art capacitive devices. These superior electrical properties and controllable dielectric relaxation make this laminate a promising high-<em>k</em> and low-loss dielectric material for next-generation nano-electronics and high-density energy storage capacitors.</p>","PeriodicalId":101138,"journal":{"name":"RSC Applied Interfaces","volume":" 6","pages":" 1348-1359"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lf/d4lf00125g?page=search","citationCount":"0","resultStr":"{\"title\":\"Engineering Maxwell–Wagner relaxation and interface carrier confinement in Al2O3/TiO2 subnanometric laminates for high-density energy storage applications†\",\"authors\":\"Partha Sarathi Padhi, Sanjay K. Rai, R. S. Ajimsha and Pankaj Misra\",\"doi\":\"10.1039/D4LF00125G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> nanolaminates (ATA NLs), with the dominant Maxwell–Wagner interfacial polarization, have been extensively explored in last decade due to their potential for new-generation energy storage applications. Here, we report the fabrication of device-grade sub-nanometric (&lt;1 nm) ATA NLs using an optimized pulsed laser deposition technique, where the interface-confined carrier relaxation and sublayer conductivity contrast-induced Maxwell–Wagner interfacial polarization mechanism was engineered by precisely tailoring the individual Al<small><sub>2</sub></small>O<small><sub>3</sub></small> and TiO<small><sub>2</sub></small> sublayer thickness along with the top-bottom capping layer thickness. The formation of oxygen vacancy-generated carriers in reduced titania sublayers across Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> heterointerfaces and their relative response towards the applied field were responsible for both charge storage and leakage. An NL with a TiO<small><sub>2</sub></small> and Al<small><sub>2</sub></small>O<small><sub>3</sub></small> sublayer thickness of ∼1 and 0.6 nm, respectively, sandwiched between ∼3 nm Al<small><sub>2</sub></small>O<small><sub>3</sub></small> barrier layers, has demonstrated an improved capacitance density of ∼33.1 fF μm<small><sup>−2</sup></small> and a high cut-off frequency up to ∼0.5 MHz, along with a low dielectric loss of ∼0.032 and a reduced leakage current density of ∼3.08 × 10<small><sup>−7</sup></small> A cm<small><sup>−2</sup></small> at 1 V. The calculated energy density value of ∼4.6 J cm<small><sup>−3</sup></small> achieved with this optimized subnanometric Al<small><sub>2</sub></small>O<small><sub>3</sub></small>/TiO<small><sub>2</sub></small> laminate is comparable to those of state-of-the-art capacitive devices. These superior electrical properties and controllable dielectric relaxation make this laminate a promising high-<em>k</em> and low-loss dielectric material for next-generation nano-electronics and high-density energy storage capacitors.</p>\",\"PeriodicalId\":101138,\"journal\":{\"name\":\"RSC Applied Interfaces\",\"volume\":\" 6\",\"pages\":\" 1348-1359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/lf/d4lf00125g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lf/d4lf00125g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lf/d4lf00125g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,由于 Al2O3/TiO2 纳米层压材料(ATA NLs)在新一代储能应用中具有巨大的潜力,人们对其进行了广泛的探索。在这里,我们报告了利用优化的脉冲激光沉积技术制备的器件级亚纳米(1 nm)ATA NL,通过精确调整单个 Al2O3 和 TiO2 亚层厚度以及顶底封盖层厚度,设计了界面约束载流子弛豫和亚层电导率对比诱导的 Maxwell-Wagner 界面极化机制。在 Al2O3/TiO2 异质界面上的还原二氧化钛子层中形成的氧空位产生的载流子及其对外加电场的相对响应是电荷存储和泄漏的原因。一种夹在∼3 nm Al2O3 阻挡层之间的 NL,其 TiO2 和 Al2O3 子层厚度分别为∼1 nm 和 0.6 nm,电容密度提高到∼33.1 fF μm-2,截止频率高达∼0.5 MHz,介电损耗低至∼0.经过优化的亚纳米级 Al2O3/TiO2 层压板的计算能量密度值为 ∼4.6 J cm-3,可与最先进的电容器件相媲美。这些优异的电学特性和可控的介电弛豫使这种层压材料成为下一代纳米电子学和高密度储能电容器的一种前景广阔的高k和低损耗介电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Maxwell–Wagner relaxation and interface carrier confinement in Al2O3/TiO2 subnanometric laminates for high-density energy storage applications†

Engineering Maxwell–Wagner relaxation and interface carrier confinement in Al2O3/TiO2 subnanometric laminates for high-density energy storage applications†

The Al2O3/TiO2 nanolaminates (ATA NLs), with the dominant Maxwell–Wagner interfacial polarization, have been extensively explored in last decade due to their potential for new-generation energy storage applications. Here, we report the fabrication of device-grade sub-nanometric (<1 nm) ATA NLs using an optimized pulsed laser deposition technique, where the interface-confined carrier relaxation and sublayer conductivity contrast-induced Maxwell–Wagner interfacial polarization mechanism was engineered by precisely tailoring the individual Al2O3 and TiO2 sublayer thickness along with the top-bottom capping layer thickness. The formation of oxygen vacancy-generated carriers in reduced titania sublayers across Al2O3/TiO2 heterointerfaces and their relative response towards the applied field were responsible for both charge storage and leakage. An NL with a TiO2 and Al2O3 sublayer thickness of ∼1 and 0.6 nm, respectively, sandwiched between ∼3 nm Al2O3 barrier layers, has demonstrated an improved capacitance density of ∼33.1 fF μm−2 and a high cut-off frequency up to ∼0.5 MHz, along with a low dielectric loss of ∼0.032 and a reduced leakage current density of ∼3.08 × 10−7 A cm−2 at 1 V. The calculated energy density value of ∼4.6 J cm−3 achieved with this optimized subnanometric Al2O3/TiO2 laminate is comparable to those of state-of-the-art capacitive devices. These superior electrical properties and controllable dielectric relaxation make this laminate a promising high-k and low-loss dielectric material for next-generation nano-electronics and high-density energy storage capacitors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信