{"title":"用于滚动触觉感知的高保真、低成本视觉触觉传感器","authors":"Lintao Xie;Guitao Yu;Tianhong Tong;Yang He;Dongtai Liang","doi":"10.1109/LSENS.2024.3477913","DOIUrl":null,"url":null,"abstract":"In this letter, a low-cost but high-fidelity rolling tactile system is proposed for distinguishing patterns on curved surfaces, including an improved vision-based tactile sensor (VBTS) and a novel lightweight processing framework. The proposed VBTS contains a modular ring-shaped illumination configuration and an improved sensing elastomer, which is easy to fabricate without complex processing and costs only 16.95 USD in total. To achieve real-time data processing of rolling tactile images, inspired by event-based cameras, an efficient processing framework is introduced based on computer graphics, which can integrate sparse rolling tactile images into complete high-fidelity images for the final classification. To evaluate the effectiveness of the proposed system, a classification model is trained using a dataset generated by 13 cylinders with similar textures, where the identification accuracy of validation is up to 98.3%. Then, we test each cylinder sample for three rolling tactile perceptions and achieve 100% identification accuracy within 1.2 s on average, indicating a promising prospect of the proposed perception system for real-time application.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 11","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Fidelity, Low-Cost Visuotactile Sensor for Rolling Tactile Perception\",\"authors\":\"Lintao Xie;Guitao Yu;Tianhong Tong;Yang He;Dongtai Liang\",\"doi\":\"10.1109/LSENS.2024.3477913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a low-cost but high-fidelity rolling tactile system is proposed for distinguishing patterns on curved surfaces, including an improved vision-based tactile sensor (VBTS) and a novel lightweight processing framework. The proposed VBTS contains a modular ring-shaped illumination configuration and an improved sensing elastomer, which is easy to fabricate without complex processing and costs only 16.95 USD in total. To achieve real-time data processing of rolling tactile images, inspired by event-based cameras, an efficient processing framework is introduced based on computer graphics, which can integrate sparse rolling tactile images into complete high-fidelity images for the final classification. To evaluate the effectiveness of the proposed system, a classification model is trained using a dataset generated by 13 cylinders with similar textures, where the identification accuracy of validation is up to 98.3%. Then, we test each cylinder sample for three rolling tactile perceptions and achieve 100% identification accuracy within 1.2 s on average, indicating a promising prospect of the proposed perception system for real-time application.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 11\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713189/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10713189/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A High-Fidelity, Low-Cost Visuotactile Sensor for Rolling Tactile Perception
In this letter, a low-cost but high-fidelity rolling tactile system is proposed for distinguishing patterns on curved surfaces, including an improved vision-based tactile sensor (VBTS) and a novel lightweight processing framework. The proposed VBTS contains a modular ring-shaped illumination configuration and an improved sensing elastomer, which is easy to fabricate without complex processing and costs only 16.95 USD in total. To achieve real-time data processing of rolling tactile images, inspired by event-based cameras, an efficient processing framework is introduced based on computer graphics, which can integrate sparse rolling tactile images into complete high-fidelity images for the final classification. To evaluate the effectiveness of the proposed system, a classification model is trained using a dataset generated by 13 cylinders with similar textures, where the identification accuracy of validation is up to 98.3%. Then, we test each cylinder sample for three rolling tactile perceptions and achieve 100% identification accuracy within 1.2 s on average, indicating a promising prospect of the proposed perception system for real-time application.