{"title":"基于散射介质的高安全性密钥存储","authors":"","doi":"10.1016/j.optlaseng.2024.108613","DOIUrl":null,"url":null,"abstract":"<div><div>Since all the secrets are buried in the secret key, securely storing the secret keys plays a significant role in our modern information society. To avoid the risk of illegally duplicating the stored secret keys, Pappu <em>et al</em>. (Science 297, 2002) proposed an alternative strategy to authenticate a legal user, but not encrypt anything, by introducing a high security-level physical identity token which is well-known as the Physical Unclonable Function (PUF). However, it is incapable of keeping the already existing digital keys away from being duplicated. Here, by modifying the Wavefront Shaping (WS) technique, we present an idea to build a mapping relationship between any easy-to-duplicate digital key and an unclonable scattering media (e.g. ground glass) that is full of uncountable microparticles, and we named it the Unclonable Equivalent Key (UEK). Theoretical analysis and optical experiments were carried out to demonstrate its feasibility, especially its secure and robust performance assisted by an easy-to-implement alignment strategy.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly-secure scattering-media-based key storage\",\"authors\":\"\",\"doi\":\"10.1016/j.optlaseng.2024.108613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since all the secrets are buried in the secret key, securely storing the secret keys plays a significant role in our modern information society. To avoid the risk of illegally duplicating the stored secret keys, Pappu <em>et al</em>. (Science 297, 2002) proposed an alternative strategy to authenticate a legal user, but not encrypt anything, by introducing a high security-level physical identity token which is well-known as the Physical Unclonable Function (PUF). However, it is incapable of keeping the already existing digital keys away from being duplicated. Here, by modifying the Wavefront Shaping (WS) technique, we present an idea to build a mapping relationship between any easy-to-duplicate digital key and an unclonable scattering media (e.g. ground glass) that is full of uncountable microparticles, and we named it the Unclonable Equivalent Key (UEK). Theoretical analysis and optical experiments were carried out to demonstrate its feasibility, especially its secure and robust performance assisted by an easy-to-implement alignment strategy.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005918\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005918","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Since all the secrets are buried in the secret key, securely storing the secret keys plays a significant role in our modern information society. To avoid the risk of illegally duplicating the stored secret keys, Pappu et al. (Science 297, 2002) proposed an alternative strategy to authenticate a legal user, but not encrypt anything, by introducing a high security-level physical identity token which is well-known as the Physical Unclonable Function (PUF). However, it is incapable of keeping the already existing digital keys away from being duplicated. Here, by modifying the Wavefront Shaping (WS) technique, we present an idea to build a mapping relationship between any easy-to-duplicate digital key and an unclonable scattering media (e.g. ground glass) that is full of uncountable microparticles, and we named it the Unclonable Equivalent Key (UEK). Theoretical analysis and optical experiments were carried out to demonstrate its feasibility, especially its secure and robust performance assisted by an easy-to-implement alignment strategy.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques