Philippe Négrel , Anna Ladenberger , Alecos Demetriades , Clemens Reimann , Manfred Birke , Martiya Sadeghi , The GEMAS Project Team
{"title":"GEMAS:硼作为欧洲农业土壤风化的地球化学替代物","authors":"Philippe Négrel , Anna Ladenberger , Alecos Demetriades , Clemens Reimann , Manfred Birke , Martiya Sadeghi , The GEMAS Project Team","doi":"10.1016/j.gexplo.2024.107618","DOIUrl":null,"url":null,"abstract":"<div><div>About a century ago, B was recognised as an essential element for the normal growth of plants and terrestrial organisms. Limitations for plant development have been recognised in agricultural systems, particularly in highly weathered soil. Boron is rarely analysed in whole rock or soil analysis, as it requires specific analytical techniques. It is often determined, after partial extraction (aqua regia or Ca<img>Cl), usually on a limited number of samples. Many more questions than answers exist about the environmental behaviour of B.</div><div>We present B contents in agricultural soil samples (0–10 cm) collected in 33 European countries (5.6 million km<sup>2</sup>) during the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) continental-scale project. The B content, determined by ICP-MS following hot aqua regia extraction, varies in European agricultural soil from 0.5 to 49 mg/kg (median 2.42 mg/kg, <em>n</em> = 2108), which is somewhat similar to total B estimates for the Upper Continental Crust (17–47 mg/kg). Its spatial distribution in agricultural soil shows a patchy pattern with low values in regions with granitic bedrock and high contents in soil formed over limestone and in volcanic areas.</div><div>Boron geochemical behaviour in soil is strongly dependent on other factors such as pH, CEC, presence of organic matter, clay and secondary oxides and hydroxides. Boron geochemical mapping at the continental scale in arable soil allows investigations of plant health, i.e., the beneficial and adverse effects due to the nutritional status of boron.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"267 ","pages":"Article 107618"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GEMAS: Boron as a geochemical proxy for weathering of European agricultural soil\",\"authors\":\"Philippe Négrel , Anna Ladenberger , Alecos Demetriades , Clemens Reimann , Manfred Birke , Martiya Sadeghi , The GEMAS Project Team\",\"doi\":\"10.1016/j.gexplo.2024.107618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>About a century ago, B was recognised as an essential element for the normal growth of plants and terrestrial organisms. Limitations for plant development have been recognised in agricultural systems, particularly in highly weathered soil. Boron is rarely analysed in whole rock or soil analysis, as it requires specific analytical techniques. It is often determined, after partial extraction (aqua regia or Ca<img>Cl), usually on a limited number of samples. Many more questions than answers exist about the environmental behaviour of B.</div><div>We present B contents in agricultural soil samples (0–10 cm) collected in 33 European countries (5.6 million km<sup>2</sup>) during the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) continental-scale project. The B content, determined by ICP-MS following hot aqua regia extraction, varies in European agricultural soil from 0.5 to 49 mg/kg (median 2.42 mg/kg, <em>n</em> = 2108), which is somewhat similar to total B estimates for the Upper Continental Crust (17–47 mg/kg). Its spatial distribution in agricultural soil shows a patchy pattern with low values in regions with granitic bedrock and high contents in soil formed over limestone and in volcanic areas.</div><div>Boron geochemical behaviour in soil is strongly dependent on other factors such as pH, CEC, presence of organic matter, clay and secondary oxides and hydroxides. Boron geochemical mapping at the continental scale in arable soil allows investigations of plant health, i.e., the beneficial and adverse effects due to the nutritional status of boron.</div></div>\",\"PeriodicalId\":16336,\"journal\":{\"name\":\"Journal of Geochemical Exploration\",\"volume\":\"267 \",\"pages\":\"Article 107618\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geochemical Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375674224002346\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224002346","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
GEMAS: Boron as a geochemical proxy for weathering of European agricultural soil
About a century ago, B was recognised as an essential element for the normal growth of plants and terrestrial organisms. Limitations for plant development have been recognised in agricultural systems, particularly in highly weathered soil. Boron is rarely analysed in whole rock or soil analysis, as it requires specific analytical techniques. It is often determined, after partial extraction (aqua regia or CaCl), usually on a limited number of samples. Many more questions than answers exist about the environmental behaviour of B.
We present B contents in agricultural soil samples (0–10 cm) collected in 33 European countries (5.6 million km2) during the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) continental-scale project. The B content, determined by ICP-MS following hot aqua regia extraction, varies in European agricultural soil from 0.5 to 49 mg/kg (median 2.42 mg/kg, n = 2108), which is somewhat similar to total B estimates for the Upper Continental Crust (17–47 mg/kg). Its spatial distribution in agricultural soil shows a patchy pattern with low values in regions with granitic bedrock and high contents in soil formed over limestone and in volcanic areas.
Boron geochemical behaviour in soil is strongly dependent on other factors such as pH, CEC, presence of organic matter, clay and secondary oxides and hydroxides. Boron geochemical mapping at the continental scale in arable soil allows investigations of plant health, i.e., the beneficial and adverse effects due to the nutritional status of boron.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.