揭示 WC-WO3 异质纳米粒子的动态硫化:原位形成 WS2 促进锂-S 电池中的硫氧化还原

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yongzheng Zhu, Shanfeng Yang, Zheng Wei, Huibing He, Yanqiu Zhu, Jinliang Zhu
{"title":"揭示 WC-WO3 异质纳米粒子的动态硫化:原位形成 WS2 促进锂-S 电池中的硫氧化还原","authors":"Yongzheng Zhu,&nbsp;Shanfeng Yang,&nbsp;Zheng Wei,&nbsp;Huibing He,&nbsp;Yanqiu Zhu,&nbsp;Jinliang Zhu","doi":"10.1016/j.carbon.2024.119790","DOIUrl":null,"url":null,"abstract":"<div><div>The sluggish redox kinetics of S species and the notorious shuttling effect of lithium polysulfides (LiPSs) severely impeded the practical application of lithium-sulfur (Li–S) batteries. Herein, we successfully synthesized WC-WO<sub>3</sub> heterogeneous nanoparticles dispersed on porous carbon substrate (WC-WO<sub>3</sub>/C) as the promoter for high-efficiency LiPSs conversion. These nanoparticles combine the robust adsorption capacity of WO<sub>3</sub> with the excellent electrical conductivity of WC. Additionally, we studied the dynamic sulfidation behavior of WC-WO<sub>3</sub> heterogeneous nanoparticles during the electrochemical process through in situ characterization. A new active phase of WS<sub>2</sub> was generated, effectively enhancing the bidirectional redox of Li<sub>2</sub>S. The Li–S battery armed with the WC-WO<sub>3</sub>-WS<sub>2</sub>/C@S cathode demonstrated outstanding cycling stability, with a capacity retention of 95.3 % at 2C after 800 cycles. The pouch cell exhibited an impressive energy density of 423.3 Wh kg<sup>−1</sup>. This work not only contributes to a thorough understanding of the mechanism behind sulfidation behavior in regulating redox kinetics of LiPSs but also offers guidance for the design of electrocatalysts for high-performance Li–S batteries based on sulfidation.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119790"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing dynamic sulfidation of WC-WO3 heterogeneous nanoparticles: In situ formation of WS2 facilitates sulfur redox in Li–S battery\",\"authors\":\"Yongzheng Zhu,&nbsp;Shanfeng Yang,&nbsp;Zheng Wei,&nbsp;Huibing He,&nbsp;Yanqiu Zhu,&nbsp;Jinliang Zhu\",\"doi\":\"10.1016/j.carbon.2024.119790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The sluggish redox kinetics of S species and the notorious shuttling effect of lithium polysulfides (LiPSs) severely impeded the practical application of lithium-sulfur (Li–S) batteries. Herein, we successfully synthesized WC-WO<sub>3</sub> heterogeneous nanoparticles dispersed on porous carbon substrate (WC-WO<sub>3</sub>/C) as the promoter for high-efficiency LiPSs conversion. These nanoparticles combine the robust adsorption capacity of WO<sub>3</sub> with the excellent electrical conductivity of WC. Additionally, we studied the dynamic sulfidation behavior of WC-WO<sub>3</sub> heterogeneous nanoparticles during the electrochemical process through in situ characterization. A new active phase of WS<sub>2</sub> was generated, effectively enhancing the bidirectional redox of Li<sub>2</sub>S. The Li–S battery armed with the WC-WO<sub>3</sub>-WS<sub>2</sub>/C@S cathode demonstrated outstanding cycling stability, with a capacity retention of 95.3 % at 2C after 800 cycles. The pouch cell exhibited an impressive energy density of 423.3 Wh kg<sup>−1</sup>. This work not only contributes to a thorough understanding of the mechanism behind sulfidation behavior in regulating redox kinetics of LiPSs but also offers guidance for the design of electrocatalysts for high-performance Li–S batteries based on sulfidation.</div></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"232 \",\"pages\":\"Article 119790\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622324010091\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010091","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂多硫化物(LiPSs)的S物种氧化还原动力学缓慢,穿梭效应严重阻碍了锂硫(Li-S)电池的实际应用。在此,我们成功合成了分散在多孔碳基底(WC-WO3/C)上的 WC-WO3 异构纳米粒子,作为高效锂硫化物转换的促进剂。这些纳米粒子结合了 WO3 强大的吸附能力和 WC 优异的导电性。此外,我们还通过原位表征研究了 WC-WO3 异质纳米粒子在电化学过程中的动态硫化行为。研究发现,WC-WO3 异质纳米粒子在电化学过程中的动态硫化行为,生成了一种新的 WS2 活性相,有效增强了 Li2S 的双向氧化还原。采用 WC-WO3-WS2/C@S 正极的锂-S 电池具有出色的循环稳定性,在 2C 下循环 800 次后,容量保持率达到 95.3%。这种袋装电池的能量密度高达 423.3 Wh kg-1,令人印象深刻。这项工作不仅有助于深入理解硫化行为背后调节锂离子电池氧化还原动力学的机制,还为设计基于硫化的高性能锂离子电池电催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing dynamic sulfidation of WC-WO3 heterogeneous nanoparticles: In situ formation of WS2 facilitates sulfur redox in Li–S battery

Revealing dynamic sulfidation of WC-WO3 heterogeneous nanoparticles: In situ formation of WS2 facilitates sulfur redox in Li–S battery
The sluggish redox kinetics of S species and the notorious shuttling effect of lithium polysulfides (LiPSs) severely impeded the practical application of lithium-sulfur (Li–S) batteries. Herein, we successfully synthesized WC-WO3 heterogeneous nanoparticles dispersed on porous carbon substrate (WC-WO3/C) as the promoter for high-efficiency LiPSs conversion. These nanoparticles combine the robust adsorption capacity of WO3 with the excellent electrical conductivity of WC. Additionally, we studied the dynamic sulfidation behavior of WC-WO3 heterogeneous nanoparticles during the electrochemical process through in situ characterization. A new active phase of WS2 was generated, effectively enhancing the bidirectional redox of Li2S. The Li–S battery armed with the WC-WO3-WS2/C@S cathode demonstrated outstanding cycling stability, with a capacity retention of 95.3 % at 2C after 800 cycles. The pouch cell exhibited an impressive energy density of 423.3 Wh kg−1. This work not only contributes to a thorough understanding of the mechanism behind sulfidation behavior in regulating redox kinetics of LiPSs but also offers guidance for the design of electrocatalysts for high-performance Li–S batteries based on sulfidation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信