Xiaoman Lu , Kaiyu Guan , Chongya Jiang , Lun Gao , Sheng Wang , Jiaying Zhang
{"title":"纳入地表温度变化可改进缺水条件下的 BESS 蒸发蒸散估算:美国中西部和大平原草地案例研究","authors":"Xiaoman Lu , Kaiyu Guan , Chongya Jiang , Lun Gao , Sheng Wang , Jiaying Zhang","doi":"10.1016/j.jhydrol.2024.132201","DOIUrl":null,"url":null,"abstract":"<div><div>Evapotranspiration (ET) is a critical climate and ecosystem variable that interconnects water, energy, and carbon cycles. Breathing Earth System Simulator (BESS) is one of the state-of-the-art biophysical models capable of producing spatio-temporal continuous ET results. However, we found that since the BESS model does not use an explicit constraint on soil moisture (SM), it has a relatively lower performance under drier conditions. Given that changes in land surface temperature (LST) are closely associated with surface water status and sensible heat energy, we hypothesize that integrating LST changes could explicitly add the soil moisture constraints and thus enhance BESS’s ability to estimate ET. Here we used the morning rise rate of LST (Trate) as a proxy of LST change because of the low noise level in Trate as well as Trate’s close relationship with daily mean sensible heat. To test the hypothesis, this study first assessed whether the performance of BESS ET can be explained by the LST change, targeting grassland sites of the AmeriFlux network in the US Midwest and Great Plains. Specifically, the ET deviation (i.e., the difference between BESS-modeled ET and field-measured ET) and Trate deviation, as well as their relationships, were investigated under different conditions of precipitation, SM, and vapor pressure deficit at the AmeriFlux sites. Results indicated that BESS ET exhibited consistently higher performance under well-watered conditions than water-deficit conditions. Also, the deviations of ET and Trate became more negatively correlated under water-deficit conditions. Leveraging the empirical relationship between ET and Trate deviations, this study developed a new way to calibrate BESS ET based on Trate calculated from LST diurnal observations, particularly under soil or atmospheric water-deficit conditions. After calibrating BESS ET, the statistical indicators between the calibrated ET and the ground measurements showed meaningful improvements relative to those before calibration. Specifically, in the Midwest (Great Plains), R<sup>2</sup> increased from 0.42 to 0.51 (from 0.45 to 0.46), and RMSE and absolute bias decreased by 12% and 42% (11% and 45%), respectively. This study highlights that the morning rise rate of LST can effectively constrain the ET models that have no SM constraints under water-deficit conditions and also sheds lights on improved ET estimation for crop, biofuel, and pastureland production in dryland and semi-dryland ecosystems.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132201"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating changes in land surface temperature improves BESS evapotranspiration estimates under water-deficit conditions: A case study for US Midwest and Great Plains grasslands\",\"authors\":\"Xiaoman Lu , Kaiyu Guan , Chongya Jiang , Lun Gao , Sheng Wang , Jiaying Zhang\",\"doi\":\"10.1016/j.jhydrol.2024.132201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Evapotranspiration (ET) is a critical climate and ecosystem variable that interconnects water, energy, and carbon cycles. Breathing Earth System Simulator (BESS) is one of the state-of-the-art biophysical models capable of producing spatio-temporal continuous ET results. However, we found that since the BESS model does not use an explicit constraint on soil moisture (SM), it has a relatively lower performance under drier conditions. Given that changes in land surface temperature (LST) are closely associated with surface water status and sensible heat energy, we hypothesize that integrating LST changes could explicitly add the soil moisture constraints and thus enhance BESS’s ability to estimate ET. Here we used the morning rise rate of LST (Trate) as a proxy of LST change because of the low noise level in Trate as well as Trate’s close relationship with daily mean sensible heat. To test the hypothesis, this study first assessed whether the performance of BESS ET can be explained by the LST change, targeting grassland sites of the AmeriFlux network in the US Midwest and Great Plains. Specifically, the ET deviation (i.e., the difference between BESS-modeled ET and field-measured ET) and Trate deviation, as well as their relationships, were investigated under different conditions of precipitation, SM, and vapor pressure deficit at the AmeriFlux sites. Results indicated that BESS ET exhibited consistently higher performance under well-watered conditions than water-deficit conditions. Also, the deviations of ET and Trate became more negatively correlated under water-deficit conditions. Leveraging the empirical relationship between ET and Trate deviations, this study developed a new way to calibrate BESS ET based on Trate calculated from LST diurnal observations, particularly under soil or atmospheric water-deficit conditions. After calibrating BESS ET, the statistical indicators between the calibrated ET and the ground measurements showed meaningful improvements relative to those before calibration. Specifically, in the Midwest (Great Plains), R<sup>2</sup> increased from 0.42 to 0.51 (from 0.45 to 0.46), and RMSE and absolute bias decreased by 12% and 42% (11% and 45%), respectively. This study highlights that the morning rise rate of LST can effectively constrain the ET models that have no SM constraints under water-deficit conditions and also sheds lights on improved ET estimation for crop, biofuel, and pastureland production in dryland and semi-dryland ecosystems.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132201\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002216942401597X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002216942401597X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Incorporating changes in land surface temperature improves BESS evapotranspiration estimates under water-deficit conditions: A case study for US Midwest and Great Plains grasslands
Evapotranspiration (ET) is a critical climate and ecosystem variable that interconnects water, energy, and carbon cycles. Breathing Earth System Simulator (BESS) is one of the state-of-the-art biophysical models capable of producing spatio-temporal continuous ET results. However, we found that since the BESS model does not use an explicit constraint on soil moisture (SM), it has a relatively lower performance under drier conditions. Given that changes in land surface temperature (LST) are closely associated with surface water status and sensible heat energy, we hypothesize that integrating LST changes could explicitly add the soil moisture constraints and thus enhance BESS’s ability to estimate ET. Here we used the morning rise rate of LST (Trate) as a proxy of LST change because of the low noise level in Trate as well as Trate’s close relationship with daily mean sensible heat. To test the hypothesis, this study first assessed whether the performance of BESS ET can be explained by the LST change, targeting grassland sites of the AmeriFlux network in the US Midwest and Great Plains. Specifically, the ET deviation (i.e., the difference between BESS-modeled ET and field-measured ET) and Trate deviation, as well as their relationships, were investigated under different conditions of precipitation, SM, and vapor pressure deficit at the AmeriFlux sites. Results indicated that BESS ET exhibited consistently higher performance under well-watered conditions than water-deficit conditions. Also, the deviations of ET and Trate became more negatively correlated under water-deficit conditions. Leveraging the empirical relationship between ET and Trate deviations, this study developed a new way to calibrate BESS ET based on Trate calculated from LST diurnal observations, particularly under soil or atmospheric water-deficit conditions. After calibrating BESS ET, the statistical indicators between the calibrated ET and the ground measurements showed meaningful improvements relative to those before calibration. Specifically, in the Midwest (Great Plains), R2 increased from 0.42 to 0.51 (from 0.45 to 0.46), and RMSE and absolute bias decreased by 12% and 42% (11% and 45%), respectively. This study highlights that the morning rise rate of LST can effectively constrain the ET models that have no SM constraints under water-deficit conditions and also sheds lights on improved ET estimation for crop, biofuel, and pastureland production in dryland and semi-dryland ecosystems.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.