{"title":"冷弯钛包双金属角钢截面桩柱的火灾后行为","authors":"Yu Shi , Jie Wang , Xuhong Zhou , Xuanyi Xue","doi":"10.1016/j.jcsr.2024.109141","DOIUrl":null,"url":null,"abstract":"<div><div>This study included a series of experiments and a detailed numerical analysis to reveal the cross-sectional behaviors and residual compression ultimate capacities of cold-formed titanium-clad bimetallic steel (TCBS) angle section stub columns (ASSCs) following exposure to high temperatures. Four cold-formed TCBS ASSCs with different geometric dimensions were tested. The exposure temperature included 20 °C, 700 °C, and 900 °C. After experiment, a comprehensive numerical analysis was carried out, wherein 200 finite element models were included. Given the lack of specialized design approaches for cold-formed TCBS structures, the applicability of conventional design approaches for carbon steel structures to cold-formed TCBS ASSCs subjected to high temperatures was assessed, where the design approaches in EN 1993-1-1, AISI 100, and the Direct Strength Method were considered. It was found that the existing design approaches for post-fire cold-formed TCBS ASSCs lacked precision. Hence, modifications to the design approach in EN 1993-1-1 were proposed to improve the accuracy on the prediction of the residual compressive ultimate capacities of cold-formed TCBS ASSCs following exposure to high temperatures. This provided the foundation for evaluating the post-fire serviceability of cold-formed TCBS structures.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109141"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post-fire behavior of cold-formed titanium-clad bimetallic steel angle section stub columns\",\"authors\":\"Yu Shi , Jie Wang , Xuhong Zhou , Xuanyi Xue\",\"doi\":\"10.1016/j.jcsr.2024.109141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study included a series of experiments and a detailed numerical analysis to reveal the cross-sectional behaviors and residual compression ultimate capacities of cold-formed titanium-clad bimetallic steel (TCBS) angle section stub columns (ASSCs) following exposure to high temperatures. Four cold-formed TCBS ASSCs with different geometric dimensions were tested. The exposure temperature included 20 °C, 700 °C, and 900 °C. After experiment, a comprehensive numerical analysis was carried out, wherein 200 finite element models were included. Given the lack of specialized design approaches for cold-formed TCBS structures, the applicability of conventional design approaches for carbon steel structures to cold-formed TCBS ASSCs subjected to high temperatures was assessed, where the design approaches in EN 1993-1-1, AISI 100, and the Direct Strength Method were considered. It was found that the existing design approaches for post-fire cold-formed TCBS ASSCs lacked precision. Hence, modifications to the design approach in EN 1993-1-1 were proposed to improve the accuracy on the prediction of the residual compressive ultimate capacities of cold-formed TCBS ASSCs following exposure to high temperatures. This provided the foundation for evaluating the post-fire serviceability of cold-formed TCBS structures.</div></div>\",\"PeriodicalId\":15557,\"journal\":{\"name\":\"Journal of Constructional Steel Research\",\"volume\":\"224 \",\"pages\":\"Article 109141\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Constructional Steel Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143974X24006916\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
This study included a series of experiments and a detailed numerical analysis to reveal the cross-sectional behaviors and residual compression ultimate capacities of cold-formed titanium-clad bimetallic steel (TCBS) angle section stub columns (ASSCs) following exposure to high temperatures. Four cold-formed TCBS ASSCs with different geometric dimensions were tested. The exposure temperature included 20 °C, 700 °C, and 900 °C. After experiment, a comprehensive numerical analysis was carried out, wherein 200 finite element models were included. Given the lack of specialized design approaches for cold-formed TCBS structures, the applicability of conventional design approaches for carbon steel structures to cold-formed TCBS ASSCs subjected to high temperatures was assessed, where the design approaches in EN 1993-1-1, AISI 100, and the Direct Strength Method were considered. It was found that the existing design approaches for post-fire cold-formed TCBS ASSCs lacked precision. Hence, modifications to the design approach in EN 1993-1-1 were proposed to improve the accuracy on the prediction of the residual compressive ultimate capacities of cold-formed TCBS ASSCs following exposure to high temperatures. This provided the foundation for evaluating the post-fire serviceability of cold-formed TCBS structures.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.