Yu Gong , Pan Liu , Dedi Liu , Xiaoqi Zhang , Weifeng Xu , Daifeng Xiang
{"title":"水库实时运行中的两阶段风险分析模型","authors":"Yu Gong , Pan Liu , Dedi Liu , Xiaoqi Zhang , Weifeng Xu , Daifeng Xiang","doi":"10.1016/j.jhydrol.2024.132256","DOIUrl":null,"url":null,"abstract":"<div><div>Flood risk analysis is vital for real-time reservoir operation. The reservoir operation horizon (OH) is generally longer than the streamflow forecast horizon (FH), while the gap between the FH and the OH was seldom considered in analytical flood risk models. This study develops an analytical two-stage risk model covering the period within the FH (the first stage) and from the FH to the OH (the second stage). In the first stage, the errors in forecasted streamflow and reservoir water level-storage relationships are considered using the multinormal distribution within the FH. In the second stage, design flood hydrographs are used to estimate the flood risk by conducting reservoir routing. Finally, the total flood risk is calculated by using the copula method to combine the flood risks from the first and second stages. Results for a case study using China’s Three Gorges Reservoir indicate that an effective FH can be identified to minimize flood risk, and balance between the forecast accuracy and length of the horizon. The length of the effective FH is not fixed and depends on reservoir inflow. Moreover, larger errors will not always lead to greater flood risks. The proposed method provides useful information on flood risk for real-time reservoir operation.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132256"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical two-stage risk analysis model in the real-time reservoir operation\",\"authors\":\"Yu Gong , Pan Liu , Dedi Liu , Xiaoqi Zhang , Weifeng Xu , Daifeng Xiang\",\"doi\":\"10.1016/j.jhydrol.2024.132256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Flood risk analysis is vital for real-time reservoir operation. The reservoir operation horizon (OH) is generally longer than the streamflow forecast horizon (FH), while the gap between the FH and the OH was seldom considered in analytical flood risk models. This study develops an analytical two-stage risk model covering the period within the FH (the first stage) and from the FH to the OH (the second stage). In the first stage, the errors in forecasted streamflow and reservoir water level-storage relationships are considered using the multinormal distribution within the FH. In the second stage, design flood hydrographs are used to estimate the flood risk by conducting reservoir routing. Finally, the total flood risk is calculated by using the copula method to combine the flood risks from the first and second stages. Results for a case study using China’s Three Gorges Reservoir indicate that an effective FH can be identified to minimize flood risk, and balance between the forecast accuracy and length of the horizon. The length of the effective FH is not fixed and depends on reservoir inflow. Moreover, larger errors will not always lead to greater flood risks. The proposed method provides useful information on flood risk for real-time reservoir operation.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132256\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424016524\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016524","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An analytical two-stage risk analysis model in the real-time reservoir operation
Flood risk analysis is vital for real-time reservoir operation. The reservoir operation horizon (OH) is generally longer than the streamflow forecast horizon (FH), while the gap between the FH and the OH was seldom considered in analytical flood risk models. This study develops an analytical two-stage risk model covering the period within the FH (the first stage) and from the FH to the OH (the second stage). In the first stage, the errors in forecasted streamflow and reservoir water level-storage relationships are considered using the multinormal distribution within the FH. In the second stage, design flood hydrographs are used to estimate the flood risk by conducting reservoir routing. Finally, the total flood risk is calculated by using the copula method to combine the flood risks from the first and second stages. Results for a case study using China’s Three Gorges Reservoir indicate that an effective FH can be identified to minimize flood risk, and balance between the forecast accuracy and length of the horizon. The length of the effective FH is not fixed and depends on reservoir inflow. Moreover, larger errors will not always lead to greater flood risks. The proposed method provides useful information on flood risk for real-time reservoir operation.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.